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1. Inotroduction

We consider the steady-state controllability in finite time for control systems given by some
partial differential equations. In this paper (and as it will be clear from the statements of the
results), “steady-state” refers to independence with respect to the state variable, i.e. steady-states
are simply constant functions (of the state variable). Moreover, the control strategies considered
here are only time dependent. For certain control systems modeled by a partial differential equation,
we investigate whether, given two arbitrary steady states of the control system, one can steer the
first steady state to the second one in finite time by means of a suitable (only time-dependent)
control. We refer to such property as the steady-state controllability for the corresponding control
system. That class of problems has been introduced by N. Petit and P. Rouchon in [19] for a control
system modeling a water tank. The control problem they addressed consists of steering in finite
time the tank from one steady state to another one, using as a control the acceleration of the tank
(this leads to two boundary controls which are only dependent on time). The dynamics is given
by a linear wave equation on a bounded open set of R

2, as detailed below. They solved positively
the problem in the case where the tank is either a disc or a rectangle. For more general tank
shapes, they asserted that the problem of steady-state controllability is open. In the same spirit,
P. Rouchon, in [20], considered the steady-state controllability for the heat equation on an open,
bounded and non empty subset Ω of R

n, where the control is only dependent on time and acts on
the boundary, i.e. y(t,x) = u(t) on ∂Ω with the usual notations. It is well-known (see [2, Theorem
IV.2.7, page 187] and [6, Theorem 2.2]) that there is a negative answer to the null controllability
in finite time of this control system, that is there are states which cannot be steered to zero in finite
time. Moreover, stronger negative results, showing that, in fact, very few states can be steered to
zero in finite time for the heat equation were obtained by S. Micu and E. Zuazua in [13, 14] for the
case where the domain Ω is a half-space (see also [15] for a fractional order parabolic equation). In
[20], P. Rouchon raised the following question: is it possible to steer the special initial data y0 ≡ 1
to zero in finite time? We use (R) to denote that particular control problem. P. Rouchon shows
that (R) has a solution if n = 1 or if Ω is a ball in R

n and asks what is the answer for general open
subsets in R

n with n > 2.

The first result of the present paper is the characterization of a property on Ω, denoted (A),
which is an obstruction to the steady-state controllability for the heat equation with boundary con-
trols that depend only on time. Property (A) is expressed in terms of the averages on Ω of the
eigenfunctions of the Laplace-Dirichlet operator. We show that property (A) holds for generic
open subsets Ω ∈ R

n, n ≥ 2, of class C3. Therefore, for generic domains Ω, question (R) has a
negative answer. Finally, in the case where Ω is a parallelepiped, we show that, again, property (A)

holds, and thus, even if the domain is not of class C3, y0 ≡ 1 cannot be steered to zero in finite time.

The second result concerns the control problem for the water tank. We again characterize a
property (B) on the shape of the tank, expressed in terms of averages on the boundary of the tank
of the eigenfunctions of the Laplace-Neumann operator, which turns out to be an obstruction to
the steady-state controllability of the associated control system. The shape of a tank is an open,
bounded, connected and non empty subset Ω of R

2. We also show that property (B) holds for
generic tank shapes of class C3.

The strategy we adopt consists in performing a Laplace transform with respect to the time t.
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The steady-state controllability issue in time T > 0 for both control systems is now translated into a
problem of complex analysis, namely, the existence of a non-zero holomorphic function f : C → C

such that:

(a) | f (s)| ≤C0eT max{0,Re(s)};

(b) For every distinct eigenvalue λi of −∆, either f (λi) = 0 (for the control of the heat equation) or
f (λi) belongs to a special one dimensional linear subspace of C

2 (for the water tank control
system).

Here, C0 is a positive constant independent of s ∈C and −∆ denotes either the Laplace-Dirichlet or
the Laplace-Neumann operator. Condition (a) is a consequence of the fact that controllability must
be achieved in finite time and, thus, it is a simply result of the Paley-Wiener theorem. Condition
(b) is the “infinite-dimensional” version of a standard fact of linear system theory: λi ∈ σ(−∆)

is a pole of the transfer function associated to the control system under consideration, which is
(almost) nothing else but the resolvent of −∆. For these two control systems, it turns out that
null-controllability in finite time would imply the existence of a non-zero entire function subject to
restrictions so strong that only the zero function would fulfill them. A contradiction is reached, and
so the conclusions.

Before closing the introduction, let us make one remark. It would be interesting to use the link
between controllability and complex analysis to derive a constructive way for actual synthesis of
the motion. Indeed, as described below, it amounts solving an interpolation problem in a restricted
class of entire functions.

2. Heat equation

Let Ω be an open, bounded and non empty subset of R
n, with n > 2. For y0 ∈ L2(Ω) and

T > 0, consider the heat equation










yt(t,x)−∆y(t,x) = 0, if (t,x) ∈ (0,T )×Ω,

y(0,x) = y0, if x ∈ Ω,

y(t,x) = u(t), if x ∈ ∂Ω,

(2.1)

where u ∈ L2(0,T ) is the control. Let us first recall classical results about weak solutions to the
Cauchy problem (2.1). Let y0 ∈ L2(Ω), T > 0 and u ∈ L2(0,T ). A weak solution to the Cauchy
problem (2.1) is a function y ∈ C0([0,T ];L2(Ω)) such that, for every τ ∈ [0,T ] and every θ ∈

C1([0,T ];L2(Ω))∩C0([0,T ];H1
0 (Ω)) with

θt +∆θ = 0 in C0([0,T ];H−1(Ω)), (2.2)

one has
Z

Ω
y(τ,x)θ(τ,x)dx−

Z

Ω
y0(x)θ(0,x)dx =

Z τ

0
u(t)

(

Z

Ω
θt(t,x)dx

)

dt. (2.3)
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Of course, every y ∈C1([0,T ];L2(Ω))∩C0([0,T ];H1(Ω)), which is a classical solution to (2.1) is
a weak solution to (2.1). It is also well known that, for every y0 ∈ L2(Ω), T > 0 and u ∈ L2(0,T ),
there exists one and only one weak solution y to (2.1). That unique y is called the solution to the
Cauchy problem (2.1).

The problem of null controllability associated to (2.1) goes as follows. Given y0 ∈ L2(Ω),
does there exist T > 0 and u ∈ L2(0,T ) such that the solution of the Cauchy problem (2.1) satisfies
y(T, ·) = 0? The answer to that question is negative, as shown by H. Fattorini in [6, Theorem 2.2]
and by S. Avdonin and S. Ivanov in [2, Theorem IV.2.7, page 187]; see also the papers [13, 14, 15]
by S. Micu and E. Zuazua, for even stronger negative results for similar questions.

In this section, we look at a particular y0, namely y0 ≡ 1, and want to see if it is possible
to steer that special y0 to 0 in finite time, that is, again, does there exists T > 0 and a control
u ∈ L2(0,T ) such that the solution y to the Cauchy problem (2.1) satisfies y(T, ·) = 0? Of course,
a positive answer to that question is equivalent to the steady-state controllability, i.e. given two
constant functions y0 ≡C0, y1 ≡C1, does there exist T > 0 and u ∈ L2(0,T ) such that the solution y
to (2.1) satisfies y(0, ·) = y0 and y(T, ·) = y1? As mentioned in the introduction, P. Rouchon showed
in [20] that the steady-state controllability holds for n = 1 or if Ω is a ball in R

n and asks what is
the answer for general open subsets of R

n, n > 2.
We use −∆D

Ω to denote the Laplace-Dirichlet operator defined next,

D
(

−∆D
Ω
)

:= {v ∈ H1
0 (Ω);∆v ∈ L2(Ω)},

−∆D
Ωv := −∆v, ∀v ∈ D

(

−∆D
Ω
)

.

Let us introduce the definition of Property (A), which turns out to be an obstruction for steering
y0 ≡ 1 to 0 in finite time.

Definition 1. The open set Ω has the property (A) if there exists a sequence (rk)k∈N∗of distinct
eigenvalues of −∆D

Ω such that

(i) one has
∞

∑
k=1

1
rk

= ∞; (2.4)

(ii) for every k ∈ N
∗, there exists an eigenfunction w of the operator −∆D

Ω corresponding to the
eigenvalue rk such that

Z

Ω
wdx 6= 0. (2.5)

We are now able to state the main results of this section.

Theorem 1. Let Ω be a bounded, open and non empty subset of R
n, n > 2. If Ω has the property

(A), then one cannot steer y0 ≡ 1 to 0 in finite time.

Proof. Assume that property (A) holds for a bounded, open and non empty subset Ω ⊂ R
n,

n ≥ 2. We suppose by contradiction that there exist T > 0 and u ∈ L2(0,T ) such that the solution y
to the Cauchy problem (2.1) with

y0 ≡ 1, (2.6)
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satisfies

y(T, ·) = 0. (2.7)

Let λ be an eigenvalue of −∆D
Ω and w be an eigenfunction associated to λ. Consider the function

θ ∈C∞([0,T ];H1
0 (Ω)) defined by

θ(t,x) := eλtw(x).

Then θ satisfies (2.2). Hence, using (2.3) with τ := T , (2.6) and (2.7), one gets

B(λ)
Z

Ω
wdx = 0, (2.8)

where B : C → C is defined by

B(s) := 1+ s
Z T

0
u(t)estdt. (2.9)

Since property (A) holds for Ω, it results that B vanishes on a sequence (rk)k∈N∗ of distinct positive
real numbers satisfying (2.4). By the easy part of the Paley-Wiener theorem, the function B is
holomorphic on C and there exists C > 0 such that

|B(s)| 6 CeT max{0,Re(s)}, ∀s ∈ C. (2.10)

We then apply the following lemma.

Lemma 1. Let f : C → C be a holomorphic function such that, for some C > 0,

| f (s)| 6 CeC|Re(s)|, ∀s ∈ C.

Let us assume that there exists a sequence (rk)k>1 of distinct positive real numbers such that (2.4)
holds and

f (rk) = 0,∀k > 1. (2.11)

Then, f is identically equal to 0.

Lemma 1 is a consequence of a much more general theorem due to Cartwright and Levinson;
see [10, Theorem 1, p. 127]. Applying Lemma 1 with f := B, we conclude that B is identically
equal to zero. This contradicts the fact that B(0) = 1. Theorem 1 is proved.

We use here notations and results of [1, 7, 24]. Let R (Rn) be the set of all non empty bounded
open subsets Ω of class C3. To state the result, one needs to define a topology on R (Rn). We follow
a construction closely related to that proposed by R. Hamilton in [7, pages 86-87]. For Ω ∈ R (Rn),
let ξ ∈C3(∂Ω;Rn) be such that

ξ(x) ·ν(x) > 0, ∀x ∈ ∂Ω, (2.12)

where ν ∈C2(∂Ω,Rn) denotes the outward normal to Ω.
Let ε0 > 0 be small enough so that the two following properties hold.

(i) For every x in R
n such that dist(x,∂Ω) < ε0, there exists a unique π(x)∈ ∂Ω such that x−π(x)

is parallel to ξ(π(x)).
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(ii) The map x 7→ π(x) is of class C3 on the open set {x ∈ R
n; dist(x,∂Ω) < ε0}.

Let ε > 0 and η ∈C3(∂Ω) be such that

|η|C3(∂Ω) < ε. (2.13)

Define

Ωη := {x ∈ Ω; dist(x,∂Ω) > ε0}∪{x ∈ R
n;

dist(x,∂Ω) < ε0 and (x−π(x)) ·ξ(π(x)) < η(π(x))}.

There exists ε1 > 0 such that, for every η ∈C3(∂Ω) with |η|C3(∂Ω) < ε1, Ωη is a bounded subset of
R

n of class C3. Let V (ε) be the set of all the Ωη with η ∈ C3(∂Ω) satisfying (2.13). We define a
topology on R (Rn) by considering the sets V (ε), with ε ∈ (0,ε1), as a base of neighborhoods of
Ω, i.e. every neighborhood of Ω in R (Rn) contains some V (ε) for ε ∈ (0,ε1) small enough. (One
easily checks that this topology is independent of the choice of ξ and ε1.) Recall that a topological
space is a Baire space if any residual set, i.e. any intersection of denumerable open dense subsets,
is dense. Since, for every Ω in R (Rn), C3(∂Ω) is a Baire space, it follows from our definition of
the topology on R (Rn) that R (Rn) is also a Baire space. (Proceeding as in [7, 4.4.7], one can also
prove that R (Rn) with our topology is a C0-manifold modeled on the Banach spaces C3(∂Ω) with
Ω ∈ R (Rn). But we do not need that property.)

Let us recall that that a property (P) holds for generic Ω ∈ R (Rn) if there exists a residual
subset D̃ ⊂ R (Rn) such that property (P) holds for every Ω ∈ D̃.

Theorem 2. Condition (A) holds for generic Ω ∈ R (Rn).

Proof. The strategy of proof is standard and goes as follows (cf. [1]). Let G ⊂ R (Rn) be the
set of Ω ∈ R (Rn) such that

(a) all eigenvalues of −∆D
Ω are simple,

(b)
R

Ω wdx 6= 0, for every non zero eigenfunction w of −∆D
Ω.

Similarly, for every positive integer l, the set Sl ⊂ R (Rn) (respectively Gl ⊂ R (Rn)) of open
sets Ω ∈ R (Rn) is defined such that property (a) (respectively, and property (b)) holds at least for
the first l eigenvalues of −∆D

Ω. Clearly, G is the countable intersection of the Gl’s.

We show next that G is residual, which implies Theorem 2. Indeed, if property (a) holds for
−∆D

Ω, then, by applying the Weyl formula for −∆D
Ω (cf. [21, Theorem 15.2, p.124]), one deduces

that λk ∼k→∞ C(Ω)k2/n, where 0 < λ1 < λ2 < · · · < λ j < λ j+1 < · · · is the ordered sequence of the
eigenvalues of the Laplace-Dirichlet operator −∆D

Ω. Therefore, property (A) holds.

For l > 0, S0 = G0 := R (Rn), Gl ⊂ Sl , Sl+1 ⊂ Sl and S := ∩l>0Sl and, similarly, Gl+1 ⊂ Gl

and G = ∩l>0Gl . Moreover, for l > 0, it is clear that the sets Sl and Gl are open in R (Rn) (see [1]).
To show that G is residual, amounts to establish the next lemma.

Lemma 2. For every l > 0, Gl+1 is dense in Gl .
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Proof of Lemma 2.
First, recall that, for every l > 0, Sl is dense in R (Rn) (see [24]).
We follow the lines of the argument of Theorem 2 in [1]. Let Ω ∈ Gl . It is sufficient to exhibit

Ω′ ∈ Gl+1, arbitrarily close to Ω. Since Sl+1 is dense, it is enough to establish the previous fact for
Ω ∈ Gl ∩ Sl+1. Let (µk)k∈N∗ be the ordered sequence of the eigenvalues of the Laplace-Dirichlet
operator −∆D

Ω repeated according to their multiplicity. We have

µ1 < µ2 < · · ·µl < µl+1 < µl+2 6 µl+3 6 · · · .

Let wl+1 be an eigenfunction of −∆D
Ω for the eigenvalue µl+1. If

R

Ω wl+1dx 6= 0, then Ω ∈ Gl+1.
Otherwise, we may assume that

Z

Ω
wl+1dx = 0, (2.14)

and we simply use µ and w to denote µl+1 and wl+1. Let ξ ∈ C3(∂Ω;Rn) be such that (2.12)
holds and let ε0 > 0 be as above (see (i) and (ii) in this subsection). Set ε′0 as the minimum of
ξ(π(x)) · (π(x)− x); x ∈ Ω with dist(x,∂Ω) = ε0/2 is positive. Let ρ ∈C∞(R, [0,1]) be such that

ρ = 1 on a neighborhood of (−∞,0],

ρ = 0 on a neighborhood of [ε′0,+∞).

We use C3
ε (∂Ω) to denote the set of η ∈ C3(∂Ω) such that |η|C3(∂Ω) < ε. For η ∈ C3

ε (∂Ω), we
consider hη : Ω → R

n defined by

hη(x) := x,

for every x ∈ Ω with dist(x,∂Ω) > ε0/2 and

hη(x) := x+η(π(x))
(

1−ρ
(

ε′0 −ξ(π(x)) · (π(x)− x)
))

ξ(π(x)),

for every x ∈ Ω with dist(x,∂Ω) 6 ε0/2. We now fix ε ∈ (0,ε0) small enough so that, for every
η ∈ C3

ε (∂Ω), hη is a diffeomorphism of class C3 from Ω into Ωη. Let P : H2(Ω) → H2(Rn) be a
linear continuous map such that

P(v) = v in Ω.

For η ∈C3
ε (∂Ω), let Qη : H2(Rn) → H1

0 (Ωη)∩H2(Ωη), φ 7→ ψ, be defined by

−∆ψ = −∆φ in L2(Ωη),

ψ = 0 on ∂Ωη.

Consider the set E of pairs (v,η) ∈ H2(Ω)×C3
ε (∂Ω) with v(x)+η(x) ∂w

∂ξ (x) = 0 for every x ∈ ∂Ω,

and the following map Φ : E ×R → L2(Ω)×R which associates to ((v,η),χ),

(

((−∆−χ)(Qη(P(v))))◦hη,
Z

Ωη

Qη(P(v))dx
)

.
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One has Φ((w,0),µ) = (0,0) and Lemma 2 holds if Φ is locally onto at ((w,0),µ). The map Φ is
of class C1 and one has

Φ′((w,0),µ)((v,η),χ) = (−∆v−µv−χw,
Z

Ω
vdx),

for every (v,η) ∈ H2(Ω)×C3(∂Ω) such that

v(x)+η(x)
∂w
∂ξ

(x) = 0, ∀x ∈ ∂Ω.

Using the Fredholm alternative (recall that the eigenvalue µ is assumed to be simple), one easily
checks that, for every f ∈ L2(Ω) and every η ∈ C3(∂Ω), there exists one and only one (v,χ) ∈

H2(Ω)×R such that

−∆v−µv−χw = f , (2.15)
Z

Ω
vwdx = 0, (2.16)

v(x)+η(x)
∂w
∂ξ

(x) = 0, ∀x ∈ ∂Ω. (2.17)

For f = 0, let us denote by (vη,χη) the corresponding unique solution. We next prove that

there exists η0 ∈C3(∂Ω) such that
Z

Ω
vη0dx 6= 0. (2.18)

To compute
R

Ω vηdx in terms of η, we consider the unique solution to the inhomogeneous Dirichlet
problem given by











(−∆−µ)S = 1, in Ω,

S = 0, on ∂Ω,
R

Ω Swdx = 0.

(2.19)

Since
R

Ω wdx = 0 and the eigenvalue µ is simple, the Fredholm alternative tells us that such an S
exists (and is unique). By applying Stokes’ formula, one gets, using in particular (2.15), (2.16),
(2.17) and (2.19),

Z

Ω
vηdx =

Z

Ω

(

(−∆−µ)S
)

vηdx =
Z

∂Ω
η

∂S
∂ν

∂w
∂ν

dσ. (2.20)

Let us assume that (2.18) does not hold. Then, the right hand side of (2.20) should be equal to zero
for every η ∈C3(∂Ω) and, therefore,

∂S
∂ν

∂w
∂ν

≡ 0.

By the Holmgren uniqueness theorem (see e.g. [23, Proposition 4.3, p. 433]), since w is a non
zero eigenfunction of −∆D

Ω, ∂w/∂ν cannot be equal to zero on any nonempty open subset of ∂Ω.
Therefore, for the previous equation to hold, it results that

∂S
∂ν

= 0 on ∂Ω. (2.21)

The following lemma tells us that (2.21) cannot hold true (and, therefore, yields (2.18)).

019 / 8



P
o
S
(
C
S
T
N
A
2
0
0
5
)
0
1
9

Obstructions for steady-state controllability Mauro Garavello

Lemma 3. With the notations above, there is no solution to the following over determined eigen-
value problem











(−∆−µ)S = 1, in Ω,

S = 0, on ∂Ω,
∂S
∂ν = 0, on ∂Ω.

(2.22)

The result is classical and we will not provide here a proof. Then, it is then easy to conclude the
argument for Theorem 2.

3. Steady-state controllability for a water tank

Let us consider the controllability problem for a tank containing a fluid. As in [19], we consider
an open, bounded and connected subset Ω of R

2, which corresponds to the shape of the tank. The
mathematical description of this problem is given by the position D in R

2 of the tank and by the
height h(t,x) of the fluid with respect to an equilibrium position. The control system is modeled by











D̈(t) = u(t), if t ∈ (0,T ),

htt(t,x) = ∆h(t,x), if (t,x) ∈ (0,T )×Ω,
∂h
∂ν(t,x) = −u(t) ·ν(x), if (t,x) ∈ (0,T )×∂Ω.

(3.1)

where the control u(t) ∈ R
2. Here ν(x) denotes again the outward unit normal vector at x ∈ ∂Ω.

The steady-state control problem is the following one. Let D0 and D1 be two arbitrary points in R
2,

does there exist T > 0 and u : [0,T ]→ R
2 such that the solution D : [0,T ]→ R

2, h : [0,T ]×Ω → R

of (3.1) with

h(0, ·) = 0,ht(0, ·) = 0, D(0) = D0, Ḋ(0) = 0, (3.2)

satisfies

D(T ) = D1, Ḋ(T ) = 0, h(T, ·) = ht(T, ·) = 0? (3.3)

In [19], N. Petit and P. Rouchon proved that, if the shape Ω of the tank is a rectangle or a circle,
then there is a solution to this controllability problem. When Ω has a general form, they assert the
problem is open. Here, in the spirit of the first part of this paper, we propose a necessary condition
for that steady-state controllability concerning the behavior of eigenvalues and eigenfunctions of a
Neumann problem.

Let us fix Ω⊆R
2 a bounded, open and connected subset of R

2 of class C2 or a convex polygon.
Let us first recall some classical results about the weak solution to the following Cauchy problem















































D̈(t) = u(t), if t ∈ (0,T ),

Ḋ(0) = s0,

D(0) = D0,

htt(t,x) = ∆h(t,x), if (t,x) ∈ (0,T )×Ω,
∂h
∂ν(t,x) = −u(t) ·ν(x), if (t,x) ∈ (0,T )×∂Ω,

h(0,x) = h0(x), if x ∈ Ω,

ht(0,x) = v0(x), if x ∈ Ω.

(3.4)
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Define

H := {h ∈ L2(Ω);
Z

Ω
hdx = 0},

V := {h ∈ H1(Ω);
Z

Ω
hdx = 0},

and let V ′ be the dual space of V ⊂ H. Let D0 ∈ R
2, s0 ∈ R

2, (h0,v0) ∈ H ×V ′, T > 0 and
u ∈ L2(0,T ;R2). A weak solution to the Cauchy problem (3.4) is a couple (D,h) such that

D ∈ H2(0,T ;R2), D(0) = D0, (3.5)

Ḋ(0) = s0, D̈ = u ∈ L2(0,T ), (3.6)

h ∈C0([0,T ];H)∩C1([0,T ];V ′), (3.7)

and such that, for every τ ∈ [0,T ] and for every

θ ∈C0([0,T ];H2(Ω))∩C1([0,T ];H1(Ω))∩C2([0,T ];L2(Ω))

satisfying

θtt = ∆θ, in C0([0,T ];L2(Ω)), (3.8)

∂θ
∂ν

= 0, in C0([0,T ];H1/2(∂Ω)), (3.9)

one has

−
Z τ

0

Z

∂Ω
θ(t,x)u(t) ·ν(x)dσ(x)dt + 〈v0,θ(0, ·)〉V ′,V

−
Z

Ω
h0(x)θt(0,x)dx = 〈ht(τ, ·),θ(τ, ·)〉V ′,V

−
Z

Ω
h(τ,x)θt(τ,x)dx. (3.10)

Of course, for every D ∈ H2(0,T ) and every h ∈ C0([0,T ];H2(Ω)) ∩C1([0,T ];H1(Ω)) ∩

C2([0,T ];L2(Ω)), if (D,h) is a classical solution to (3.4), then it is also a weak solution to (3.4).
Moreover, it is well known that, for every (D0,s0) ∈ R

2 × R
2, (h0,v0) ∈ H ×V ′, T > 0 and

u ∈ L2(0,T ;R2), there exists one and only one weak solution (D,h) to (3.4). This unique (D,h) is
called the solution to the Cauchy problem (3.4).

We say that the control system (3.1) is steady-state controllable if, for every (D0,D1) ∈ R
2 ×

R
2, there exist T > 0 and u ∈ L2(0,T ;R2) with u(0) = 0 such that the solution to the Cauchy

problem (3.4), with h0 = v0 = 0, s0 = 0, satisfies (3.3).

Consider the Laplace-Neumann operator −∆N
Ω defined as follows:

D
(

−∆N
Ω
)

:=

{

v ∈ H2(Ω);
∂v
∂ν

= 0 on ∂Ω
}

,

−∆N
Ωv = −∆v, ∀v ∈ D

(

−∆N
Ω
)

.
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3.1 A condition that prevents steady-state controllability

We next introduce property (B) which turns out to prevent steady-state controllability in finite
time.

Definition 2. The open set Ω has the property (B) if there exists a sequence (λk)k∈N∗ of distinct
eigenvalues of −∆N

Ω such that

(i) there exist ρ ∈ (0,2) and C > 0 such that

λk 6 Ckρ, ∀k > 1, (3.11)

(ii) for every k ∈ N
∗, there exists an eigenfunction wk for the eigenvalue λk and the operator

−∆N
Ω such that

Z

∂Ω
wkνdσ 6= 0. (3.12)

We are now able to state the following result.

Theorem 3. If Ω has property (B), then the control system (3.1) is not steady-state controllable.

The proof is similar to that of Theorem 1.

3.2 Genericity of condition (B)

In this section, we prove that condition (B) holds generically for tank shapes of class C3, and
therefore by Theorem 3, for such generic tank shapes Ω, steady-state controllability for a water-
tank does not hold.

We use here notations and results of [22]. Let S3 be the set of all non empty open, bounded,
connected subsets Ω ⊂ R

2 of class C3. The topology on S3 is defined as follows ([22, p. 7]).

Let C3
b(R

2,R2) be the space of functions u : R
2 → R

2 of class C3 such that

‖u‖3 := Sup{|∂αu(x)| ; x ∈ R
2, α = (α1,α2) ∈ N

2

with α1 +α2 6 3} < +∞.

Then C3
b(R

2,R2) equipped with the norm ‖ · ‖3 is a Banach space. For Ω ∈ S3 and u ∈C3
b(R

2,R2),
let Ω+u := (Id +u)(Ω) be the subset of points y ∈ R

2 such that y = x+u(x) for some x ∈ Ω. By
simple topological arguments, one easily gets that, for u ∈C3

b(R
2,R2) small enough, Ω+u belongs

to S3.

For ε > 0, let V (ε) be the sets of all the Ω+u with u ∈C3
b(R

2,R2) and ‖u‖3 < ε. The topology
on S3 is defined by considering the sets V (ε) with ε small enough as a base of neighborhoods of
Ω. Then S3 is a Baire space.

Theorem 4. Condition (B) holds for generic Ω ∈ S3.

The proof follows the lines of that of Theorem 2 but is much more involved.
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