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1. Introduction

The Black-Scholes model involves a risky asset and a risi-&isset whose price at tirhés
§ = €', wherer is the interest rate; it assumes that the price of the riskgtds a solution to the
following stochastic differential equation,

d§ = S (udt+ ordBy), (1.1)

whereW is a standard Brownian motion on a probability spé@e4,P). Hereo; is a positive
number, called thevolatility. In what follows, it will be convenient to work with the sqear
volatility n; =
A European option on the underlying risky asset, is a cohtrdmch permits to its owner a

benefitP,(Sr) at timeT The functionP, is called the payoff function and the dates the maturity.
With the Black-Scholes assumptions, it is possible to pthaethe option’s price at timieis given
by

R=Pe(S,) =E*(e "TUP(S1)|R). (1.2)

where the expectatioR* is taken with respect to the so-called risk-neutral prditghP* (equiv-
alent toP and under whicld§ = S (rdt + ,/n{dW), W being a standard Brownian motion under
P* andk being the natural filtration dif). It can be seen that the pricing functi®a solves the
parabolic partial differential equation:

0P. nS %P, aP
St 5 9z TS5 Pe=0 (1.3)

In contrast with European options, American options canXggoised any time before maturity:
An American vanilla call (resp. put) option is a contractiggyits owner the right to buy (resp.
sell) a share of a specific common stock at a fixed fideefore a certain dafe. More generally,
for a payoff functionP,, the American option with payof?, and maturityT can be exercised at
anyt < T, yielding the payoffP,(S).

Using the notion of strategy with consumption, the Black@®@es model leads to the following
formula for pricing an American option with payd#,: under the risk neutral probability,

R =P(S.1) = supE' (e "“IR,(S)|R), (1.4)
TeTtT
where7; 7 denotes the set of stopping times[inT] (see [16] for the proof of this formula). It
can be seen that for an American vanilla call on a non dividesnng stock, the formula (1.4)
coincides with (1.2), so American and European vanillasdadive the same price. This means that
an American vanilla call should not be exercised before ritgtu
It can be shown that the pri¢eof the American put of strik& and maturityT is given as a solution

to
P nFPoP _oP

R aszz—i-l’s —rP<0, P(St)>PR(§, te[0,T), S>0,
oP n52 aP (1.5)
(Gr+ > 682+S rP)(P—P,)=0 te0,T), S>0,

P(St=T)=P(9), S> 0,
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where
Po(§) = (K—-9);.

The volatility is the difficult parameter of the Black-Schsimodel. It is convenient to take it to be
constant but then the computed options’ prices do not matcmirket prices. Conversely, taking a
family of options available on the market and inverting fack of them the Black-Scholes formula
does not yield a constant volatility: for each option, ontaots a differenimplied volatility, and
the implied volatility is often a convex function of the &&iK, which is known in finance as the
smile effect

There are essentially three ways to improve on the Blaclo®shmodel with a constant volatility:

e Use a local volatility i.e. assume that the volatility is a function of time and luf stock
price. Then one haw® calibrate the volatilityfrom the market data, i.e. to find a volatility
function which permits to recover the prices of the optiovailable on the market.

e assume that the volatility is itself a stochastic procese for example [10, 8].

e generalize the Black-Scholes model by assuming that thepsige is for example a Lévy
processsee [7] and references therein.

In this paper, we deal with the first approach: the calibrapooblem consists in finding(St)
from the observations of

e the spot prices, today,
e the pricegP)ic; of a family of options with different maturities and diffeviestrikes(T;, K )i/ .

A way to solve the calibration problem is to

findn € o minimizing (1) + (M), I = 3PS, 0K T) PP (16
IS

where# is a suitable closed subset of a possibly infinite dimensifumaction spaceJr is a suit-
able Tychonoff regularization functional, and whé¥s,,0,K;, T;) is the price of the option with
strike K; and maturityT; computed with the local volatility.

Note that if# is not carefully chosen andJdk = 0, then the problem is unstable too. Note also that
computingJ(n) requires solving @) different problems of the type (1.3) for European options or
(1.5) for American options, so this approach is expensive.

There has been a number of valuable studies on the calibratieolatility with European options
of which it is difficult to make a complete account here. In hado and Osher [14, 15] a least
square method is used, the volatility is discretized bynggliusing matlab and the computation of
the gradient ofl with respect ta) is done either by numerical differences or by Adol-C. In Actd

et al [3], calibration with European option is made easieubiyg Dupire’s equation. An alterna-
tive to least squares is the pioneering method by Avellae¢dh[6] based on the maximization of
an entropy function via dynamic programming. Up to our kremge, calibration with American
options has not been very much discussed yet in the matheahfitiance literature.
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The paper is divided in five parts: we first give theoreticaults on the variational inequality
for pricing American options and on the free boundary whielimitates the region of exercise.
The second part of the paper is devoted to the finite elemethtatdéor pricing American options.
We show in particular that under some assumptions, therfeég doundary in the discrete problem
too, and we discuss two algorithms for computing the pricéhnefAmerican option, both based on
active sets strategies. The third part is devoted to vitjatihlibration with American options: we
consider problem (1.6) with

T S
Jr(n) = /0 /0 a(SIgN)? + b(@N)? + ¢(SHZN)? + d(S8241)2 + (N — Ng)2.

The minimization problem is constrained, and optimalitpditions are found for (1.6); it is also
proved that differentiability with respect tpholds provided a strict complementarity condition is
satisfied. We give an example of calibration with Americatiays on the FTSE index, where the
squared volatility is discretized with bicubic splines. eTiesults contained in the four first parts
are proved in [1, 5, 4]. In the last part of the paper, we irigas¢ the numerical method used for
pricing in the case when an American option on a portfoliotaiming two assets. At a given time,
the free boundary is a curve. Two key ingredients for optincimg are discussed: mesh adaptivity
and the algorithm for solving the discrete variational unady.

2. The variational inequality and the free boundary

All the proofs of the results below can be found in [1].
Callingt the time to maturity, the problem becomes

2 32
E_ME_rSO_P_FrPEO’ P>PO’

ot 2 02 0S - (2.1)
0P n(St)Fo%P oP - '
(at 35 rSaSJrrP)(P P,) =0,

with Cauchy data
Pli—o = P.. (2.2)

We focus on the case of a vanilla put, i.e. the payoff funcigd®, (S) = (K — S) ;.
To write the variational formulation of (2.1) (2.2), we needuse the Sobolev space

V={vel?R,): S4s € L2(R,)}, (2.3)

dv
d
and we callx the subset o¥:

X ={veV,v>P, inR,}. (2.4)

Since the function o¥ are continuous, the inequality in (2.4) has a pointwise rimgaimhe setx
is a closed and convex subset\gfbecause convergence\inimplies pointwise convergence. We
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introduce the bilinear forma:

_ [ Sn(St)dvow
a(v,w) —/]R+ > 3535 IS
+ < rit)+n(St) + (St)) sVwds (2.5)
R. 0S
+r vw dS
R

We make the assumptions: there exist two positive constgrasdn such that for alk < [0, T]
and allSe R,

0<n<n(St)<n. (2.6)
There exists a positive consta®y such that for alt € [0,T] and allSe R,
on
<GCy. .
S(SUI<Gy (2.7)

These imply that the bilinear form is continuous oW uniformly int, and Garding’s inequality :
for a non negative constahtdepending only om, n andGC,,

a(vv) > Mv MV, ) WVEV. (2.8)
The weak form of (2.1) isto
find P e ¢0([0, T];L2(R))NL2(0, T; %) such thatly € L2(0,T;V’), satisfyingPy_o = P., and

We x| (%T()v P(t )>+at(P(t),v—P(t)))20. (2.9)

Theorem 1. Withn satisfying assumptions (2.6) and (2.7), the problem (2a8)adunique solution
P which belongs t@%([0,T] x [0, +)) with P(0,t) = K, Vvt € [0, T], and is such that

S, % € L2(0,T;V), SE € CO([0, T;LA(Ry)) and & € L?(0, T;L3(Rx)).

The function P is also greater than or equal tQ fhe price of the vanilla European put.

The quant|t|e3|P||Lz 0T): IPlloor 2z ISR 20Ty |1 5 lIzorv)s

H HLm (O.T;L2(R,)) H re HLz (OTiL2(R,)), are bounded by constants depending only omKn and
Cn .

We have that

-1< g—g <0, vte(0,T], a.a.S>0. (2.10)

There exists a functiop: (0, T] — [0,K), such thatvt € (0,T), {S s.t. RSit) = P,(S)} = [0, y(t)].
The functiony is upper semi-continuous, right continuous/@T ), and, for each & (0, T], y has
a left-limit at t.

Calling p the function u: P+ AP, where Ais the linear operator: V— V’; for all v,w e V,

Av=—NSUE & rS"S+rv we have
U= rKl{p:po}. (211)

In other words, a.e., one of the two conditions=FP, and u= 0 is not satisfied: there is strict
complementarity in (2.1).
Finally, there existsp > 0 depending only on and K such that

y(t) >y, WVtel[0,T]. (2.12)
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3. Pricing American options with a finite element method

3.1 A finite element method

All the proof of the results below are given in [5].
We localize the problem of0, S), soV becomes
200 &< 1200 Q)
V={vel ((O,S),Sa—S € L%((0,9);v(S) =0}
(whereS_is large enough so thEg(S_) =0), andx = {veV,v> P, }. The variational inequality is
(2.9) with new meanings for, K, anda;. 3
Moreover, ifyp € (0,K) as in (2.12) is known, one can focus on the smaller inteSed, with
0 < S< yp and obtain the equivalent weak formulation:

find P € L2((0,T, %) N c%([0, T];L3(Q)), with ‘;—': e L2(0,T;V)

such thaf(t = 0) = P, and (2.9)for allv € x, with the new definition of the closed s&t:

K ={veV,v>P,in (0,§,P=P,in (0,5} (3.1)

We introduce a partition of the intervéd, T| into subintervalgt,_1,tp], 1 < n <N, with At =

t —t_1, At = max At; and a patrtition of the interv@O_,SJ into subintervalay = [S§-1,5], 1 <i <

Np+1,suchthate=5 < S <--- < §y, < S\|h+_1 = S The size of the intervaly is calledh; and
will assume that both the strik€ and the real numbe® coincide with nodes off},: there exist
0 <K,0<da<kK<N,+1suchthat =K andS,_1 = S We define the discrete spadeby

Vi = {Vh €V, YW € Th,Vh|, € P1(w) }, (3.2)

where?;(w) is the space of linear functions om
SinceK is a node ofry, P, € Vi, and sinceSis also a node of},, we can define the closed subset
Kh of Vi, by

Kh={VEWH, v>P,in[0,S), v=PR,in[0,F} (3.3)
={veW, V(S) >P,(S),i=0,...,Nn+1, V(S) =P,(S), i < a}.
The discrete problem arising from an implicit Euler schemie i
find (P")o<n<n € %Xh satisfying
PO=P, (3.4)
and for alln, 1 <n<N,
we %n, (P"—P"1v—P") +Ata,(P",v—P") > 0. (3.5)
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ConsiderA such that Garding’s inequality (2.8) holds, and ta#te< % there exists a unique"
satisfying (3.5).

Let (W)i—o..n, be the nodal basis ofy, and letM and A™ in R H+Dx (N1 pe the mass and
stiffness matrices defined by

Mij = (W,wl), Al =a, (W, w), 0<i,j< N
Calling
U"= (P(S),...,P"(Sy,))" andu® = (P,(S),...,P.(Sy,))",

(3.5) is equivalent to

(MU"—U"Y) 4 A ANUM) > 0, fori>a,
ur=u? fori<a,
un > ue,

UN—U9HT(MU"N—U" 1) +ALANU") = 0.

(3.6)

We callM, respectivelyAg, the block ofM, respectivelyA", corresponding to <i,j < Np.

3.2 The discrete exercise boundary

One may ask if there is a well defined exercise bountlasyh(t) also in the discrete problem.
A positive answer has been given by Jaillet et al [13] in theeaaf a constant volatility, an implicit
Euler scheme and a uniform mesh in the logarithmic variabhe main argument of the proof lies
in the fact that the solution to the discrete problem is narelesing with respect to the variable
With a local volatility, this may not hold (see the numerieaample below). The result of Jaillet
et al has been completed for a local volatility in [5], in theesial case when the mesh is uniform
in the variableS here too, the discrete problem has a free boundary. The paes not rely
any longer on the monotonic character of the discrete swiwtiith respect td but on the discrete
analogue of the bounds (2.10), i.el < g—’; < 0. This is proved by studying a suitable penalized
problem (which is the discrete version of a semilinear paliatequation with a non decreasing
and convex non linearity) and by using a discrete maximumcipie on the partial derivative with
respect t& (for this reason, a uniform mesh is needed). We can summtizby

Theorem 2. Letn verify (2.6) and (2.7), and choodg < % with A givenin (2.8). Assume that the
grid 7 is uniform and that S> 0. Assume also that the parameters h ﬁ)dare small enough so
that the matriced\§ andM 4 + At,Af are tridiagonal irreducible M-matrices for all . <n <N.
There exist N real numbexg, 1 <n <N, such that

S<wh<K,
Y is a node ofrh, 3.7)
Vi,0<i<Np, PYS)=P,(x)<S <\

We believe that this may be extended to somewhat more gemesdies.
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3.3 A front-tracking algorithm

Here, we propose an algorithm for computing the solution30$) assuming that the free
boundary is the graph of a function. In our experience, tlgerithm, based on tracking the free
boundary, is more robust (and slightly more expensive) tharBrennan and Schwartz algorithm
(see [13]). Since the free boundary is the graph of a functimnidea is to look foy;, by

o Start fromyf) =1,

¢ solve the discrete problem corresponding to

P"—P™!  n(Sty)Sae*P" 0P | =
AT 2 3 —ruas+rP =0foryh <S<S

P'=P, for0<S<W,

andP"(S) =0,
o if P" satisfies (3.5), stop else shift the pojfjtto the next node on the mesh left/right accord-
ing to which constraint is violated by".

With the notations introduced above, the algorithm for catimg P is as follows:

Algorithm
choosek such thals/”h‘l = S; set found=false;
while(not found)

solve
(MU"—U™Y) A, ANUM); =0, fori>Kk,

3.8
ur =u? fori<k (38)

if (UN—UO)%1<0)
found=false;k = k+1;
else
computea = (M (U"—U"1) + A, AU _q;
if (a<0)
found=false; k=k—-1;
else found=true

In our tests, we have computed the average (over the time)steymber of iterations to obtain
the position of the free boundary: it was found that (with thea fine time-mesh), this number is
smaller than 2.

3.4 Aregularized active set strategy

The algorithm above is not easy to generalize in higher dgioeis. For an algorithm based on
active sets and generalizable in any dimension, we havejtdanéze first the problem. Following
[12], we first go back to the semi-discrete problem: fiflds % such that

wex, (P"—P"1v—P")+Ata,(P",v—P") >0.
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For any positive constam;, this is equivalent to finding" € V and a Lagrange multiplign € V'
such that

pn_ Pnfl
—,v) T ay(P) — (V) =0,
AN

1= max0,u—c(P"— P%)).

Yev, (
(3.9)

When using an iterative method for solving (3.9), i.e. whengtructing a sequeng¢®™™, u™) for
approximating(P", ), the Lagrange multipliep™ may not be a function if the derivative of the
P™M jumps, whereast is generally a function. Therefore, a dual method (i.e. arative method
for computingu) may be difficult to use. As a remedy, K.Ito and K.Kunisch [t®hsider a one
parameter family of regularized problems based on smogtiie equation fopi by

u=amax0,p— c(P"— P°)), (3.10)
for 0 < a < 1, which is equivalent to
i = max0,—x(P"— PY)), (3.11)
forx =ca/(1—a) € (0,+). We may consider a generalized version of (3.11):
u=max0, g—x(P"—P?)), (3.12)

wherep is a fixed function. This turns to be useful when the complearéy condition is not
strict.
It is now possible to study the fully regularized problem
n_ pn-1
Wwev, <7,v> +a, (P",v) — (V) =0,
Aty
k= max(0,—x(P" - P%),

and prove that it has a unique solution, witla square integrable function. A primal-dual active
set algorithm for solving (3.13) is

(3.13)

Primal-dual active set algorithm
1. ChooseéP™0, setk =0
2. Loop

(a) Set
a M= {S: (9 — x(P"™(5) - P°(S)) > 0}
andgHk+l = (0, S_)\,‘Zl —k+1
(b) Solve forP™*1 cV: eV,

< Pn,k+1 o Pnfl

m ,v) +a (PY™H V) — (= x(P™ 1 —P%, 1, wav) =0. (3.14)
n
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(c) Set

k+1 ;
H = { H_ X(Pn’k+l _ pO) on ﬂ—7k+l (3'15)

(d) Setk=k+ 1.

Calling A, the operator fronV toV’: (Apv,w) = (Aitn,w) + &, (v,w) andF :V x L3R, ) —

V' x L2(Ry)
A+ p— B
F(v,p) = Aty ,
H) (u—meQM—XW—P%)>

itis proved in [12] thaG(v,p) : V x L?(R,) — V' x L?(R..) defined by

Anhy+hy )

G(v,wh=
e (W—X%mmwm»mm

is a generalized derivative &f in the sense that

lim HF(V+ hlv M+ h2) B F(V7 U) B G(V+ hlv M+ hZ)hH —

0;
Ih]|—0 [l

Note that

h —l—hz
G(P™, h = (oM :
( 7|‘“l ) ( h2 o Xlﬂ—,kJrlhl

Thus the primal-dual active set algorithm above can be seem semi-smooth Newton method
applied toF, i.e.
(Pn7k+l7uk+l) — (Pn7k7uk) _’_G—l(Pn,k’uk)F(Pmk’uk). (316)

Indeed, calling8P",8p) = (P™k+1 — Pk L+t 1) it is straightforward to see that in the primal-
dual active set algorithm, we have

Pn—l
Aty

Anépn +6u = —Anank_ p_k_|_
6“ = _uk on _/.;;le,kle7
B~ XOP" = —p+ - X (P~ P°) ona ¥,

which is precisely (3.16).

In [12], Ito and Kunish, by using the results proved in [1Htablish that the primal-dual active set
algorithm converges from any initial guess, and that if thigdl guess is sufficiently close to the
solution of (3.13), then the convergence is superlinear.

To compute numerically the solution of (3.9), it is possibdecompute successively the solu-
tions (P"(x¢),(X¢)) of (3.13) for a sequence of parametéxs) converging to+: to compute
(P"(Xe+1),M(Xe+1)), one uses the primal-dual active set algorithm with ingiagssP"(X,), L(X¢))-

Notice that it is possible to use the same algorithm for thly filiscrete problem. Convergence
results hold in the discrete case if there is a discrete maximrinciple. The algorithm amounts
to solving a sequence of systems of linear equations, anth#tex of the system varies at each
iteration.
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3.5 Mesh adaption

One of the key features of the finite element method is thatrinits to compute reliable and
often very efficient error indicators for the error betwebka e&xact and discrete solutions. We do
not wish to develop much on this topic here, because thisseed and technical arguments. We
rather refer to [4]. The strategy relies on the fact that thieredue to the time discretization can
be estimated separately: there are indicators for the duerto time discretization, and at each
time step, indicators for the error due to the discretizatiath respect to the price variable. The
error indicators are local. Therefore, they tell us wheestitme grid, and the mesh in ti8variable
should be refined.

To illustrate this, we consider an American put, with strike= 100. The interest rate is@ as
above, but the volatility is local and we choose:

0(St) =01+0.1x1 St),

100(t—045)2+%<2(
so the volatility is piecewise constant and takes the val@erDan ellipse and Q outside. With
such a choice, the exercise boundary is expected to change aé it enters and comes out the
region whereo = 0.2. On Figure 1, we plot the volatility surface as a functionSandt. The
exercise boundary is displayed on Figure 3: we see thatéleebivundary does change slope when
the volatility jumps. We see also that refinement is cruaiabdrider to catch properly the exercise
boundary. Note that the functignis not monotone. On Figure 2, two meshes at displayed: we see
that the refinement follows the free boundary. On Figure & dtror indicators with respect ®

are plotted: here again, we see that the error indicatorlaaye near the free boundary, where the
functionP is singular.

"volatility"

Figure 1: The local volatility surface

4. Calibration with American options
The calibration problem consists in findingrom the observations of

e the spot prices, today,
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"solution5"

O O O O O O O O o o =
N W 0 g9 0 WO
t

80 85 90 95 100 105 110 115 120

"solutionlO"

N W s 01O a9 o W
t

O O O O O O O O O O =

80 85 90 95 100 105 110 115 120

Figure 2: Two successive mesh refinements: the mesh is refined aloegeheise boundary, see next figure

e the prices(FT.)iQ of a family of American puts with different maturities andfdient strikes
(Ti, K.

We callT = max¢ Ti. We assume that for anye |, the maturityT; coincides with some node of
the time grid, i.e. there existd < N such thaty, = T;. We also assume that for ang I, the strike
Ki is a node of th&s-grid, i.e. there existg; < N, such thakK; = &
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~—~—z

hoe 4 ® o e

S RS

Figure 3: Left: the exercise boundary for the final mesh and the ellgsere the volatility jumps: there are
two singularities corresponding to the jumps of volatiliBight: the exercise boundaries for different mesh
refinements

"indic_s10"

coocococo

Figure 4: Indicators for the error due to the discretization with exgtpgoS

We consider the least square problem:

findn € s minimizing  J(n) +J(n), Jn) = Z IPN(S) PR (4.1)

where# is a suitable closed subset of a possibly infinite dimensimmation spaceJr is a suitable
Tychonoff regularization functional, and

find (P")o<n<n;, P" € %n, satisfying
PP=P,, (4.2)
and for alln, 1< n<N;,

We Knj, (P'—P"Lv—P") +Atnar_, (P",v—P") >0, (4.3)
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where=P,j = (Kj — S);.. We call; the real number
W = (P =P w = BY) o+ Atwa o (P W = PY). (4.4)

4.1 Optimality conditions

In [1], the inverse problem corresponding to the continuousterpart of (4.3) is studied and
optimality conditions are given for suitable choicessofandJg. Here, we aim at finding optimality
conditions for the fully discrete problem (4.1).

In order to find optimality conditions for the present leagtiare problem, we replace the state
equations (4.2) (4.3) by the above mentioned penalizedigmghwhose penalty parameter, called
€, will tend to 0. Doing so, we obtain a new least square probfemwhich necessary optimality
conditions are easily found. Then, we pass to the limi gees to zero: we obtain the following
result:

Theorem 3. Let n* be a minimizer of (4.1) which can be found as a limit of a seqeeyj of
minimizers for the penalized problems, and(Ret")ic; be the solutions to (4.2) (4.3) with= n*.
There exist §" € Vi, anda?; €R,1<n<N;, p<j<Ny i€l such thatvv € Vi,

(yl* v )+AtNi ( vy ™)+ Z V(S ) 2(R™M(S) —PV(S),
(4.5)

(yi yl* i ) +Atn (a%—tn(wyi*’n) + Z GR]V(S])) - 07 1 =n< Nv
=p
with, forall j,n,p<j<Np, 1<n<N;
alj(F7(S) —P:(S)) =0, Ki¥%"(S)=0, ay"(S)=0,
such that for any) € #, noting bydn =n —n*,

0< < DJ(n"),0n >
P""(s)-PR"(S1)

1 Ni Nh h
-z A, S Son(S,Ti—t,)y""(S . U
2£ nZl anp 10N(S;: T~y (S) _'_Pi "(S) - P (Si41)
hjt1

4.2 Differentiability

Proposition 1. TakeAt < with A as in (2.8). Assume that for aff € # verifying (2.6) (2.7),

the the parameters h anﬂw are small enough so that the matricA§ and M, + At,A[' are

tridiagonal irreducible M-matrices forallnl <n<N and l,a <1 < N;. Letn € # be such that
the strict complementarity conditions

P'(S) > P.i(S) & W =0, (4.6)
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foralli el and forall j,p < j < Nn, where Pis the solution to (2.3) (2.4), and'p= (P" — Pt wl) +
AtnaT,tn(Pi”,wj). The functional J is differentiable a, and for any admissible variatiog of n,

<DJ(),x >=
R'(S) —P'(S-1)
IS S A S (ST (S h *.7)
2€n21 anp XD A +Pin(Sj);Pin(Sj+1)
j+1

where ¥ = y"(n); € Vh, af'; €R, p < j < Ny, are the solution toiv € Vh,
(yiNi’V) + Aty ( )+ Z o V(S ) =2(PM(S) - P)V(S,),

(W—yimrl"’) + Aty (aTi_tn(v,y{‘)Jr Z a{jjv(Sj)> =0, 1<n<N,
i=p

with
afj(P(S) —Po(§))) =0, W¥'(S) =0, aly(§) =0
4.3 Algorithm

We describe the simplest possible projected descent meéttibd spacey, where the descent
direction is computed thanks to the considerations aboVve degrees of freedom of a function
X €Y are the values of at some nodes of a grid and we call théfj(X))1</<L, (A; is the linear
form onY which mapsy to its value at a given node). We enddiwvith the basiSAs(X))1</<L
defined by} (Ax) = 8, and we define the inner produQt’_; a:/\r, S5 1 be\e)y = S| aby.

Algorithm
e Choosen € #, > 0andp > 0, sete= 4.
¢ While e>¢edo

1. ComputeR)ic| by (4.2) (4.3), by using for example one of the algorithmsposed in
§3.3and(n) +Jr(N), IM) = Siet P (S) — R,

2. Foralli €1, compute(y")1<n<ni, Y € Vi, satisfying (4.5).

3. compute €Y such that for allk €'Y,

(¢ X)y

N u(s) u(S 1) (4.8)
Z Z Atn Z SzX Slle )yln(sl) <+UP(Sj)JUP(Sj+1) ) :
e

n=1 1=p hi+1

4. setf] =, (n—p(gradir(n)+{)), e= || —nl/, n = A, wherem, is the projection on
H.
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e end_do

The complete justification of the algorithm above is stillapen question because it is not proved
that —gradlr(n) — C is always a descent direction. However, from Propositiowéd know that
most often,{ is exactly grad(n): in this case, the algorithm coincides with a projected ignatd
method.

In the numerical tests below, we have used variants of tigisrigthm (an interior point algorithm
due to J. Herskovits[9]-it is a quasi-Newton algorithm whoan handle general constraints), which
have proved very robust. In particular, we never experigrimeakups caused by the fact that the
direction is not a descent direction.

Parallelism The algorithm above can be parallelized in a very natural evag distributed mem-
ory machine witiN,, processors, because the computations of the (Ring), i € | are independent
from each other. We splitin | = UE‘il'k in order to balance the amount of work among the proces-
sors, the processor labell&dbeing responsible for the sums over I in J(n) and (4.8). Note that
the complexity of the computation &f,y; depends om, so load balancing is not straightforward.
The data fom and{ are replicated on thil, processors. The processor labelledomputes its
own contribution toJ(n) and to (4.8), i.e. the sums ovee li, in an independent manner, then
communications are needed for assembling the sums evein J(n) and in (4.8).

For programming, we have us€d+ + with the message passing librampi.

4.4 Results with American Puts on the FTSE Index

In this paragraph, we consider American puts on the FTSKirntee data correspond to June
6, 2001. We thank José Da Fonseca for providing us with the dat
The price of the underlying assetxs = 5890. The American puts correspond to four different
maturities: 0122 0.1990.295 0.55 years. We sef = 0.55. The interest rate varies with time,
sor is replaced by (t) in (4.3), and this function is known. For these maturitiég, prices of the
observed options vs strike are plotted on Figure 5. The aito fend the volatility surface from
these prices. The volatility is discretized by functionattare the sum of

e a piecewise affine function in th&variable which is constant in the regio8s< 1000 and
S> 9000 and affine in the region 1060S < 9000

e a bicubic spline in the region 1000 S < 9000, [t — T /2| < T/2+ 0.1, whose value and
derivatives vanish on the boundary of this rectangle. Therobpoints of the spline are
plotted on Figure 6, where the time variabl€eTlis-t. We see that the control points are not
uniformly distributed: the mesh is refined for small timiesnd at the money.

The grid foru is non uniform with 745 nodes in th@direction and 210 nodes in thelirection.
For simplicity, the grid is chosen in such a way that the fii, Kj)ic; coincide with some grid
nodes.

The (squared) volatility obtained at convergence is digadeon Figure 7: the surface has a smile
shape. The relative errors between the observed priceshasd tomputed at convergence are
plotted on Figure 8, top. They are rather large for smalleslofK. However, we have to realize
that the available observed prices are themselves givérawiund-off error, which is exactly.®.
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Figure 5: The data for the inverse problem: the prices of a family of Aican puts on the FTSE index

On Figure 8, bottom, we have plotted the relative round-affreon the observed prices. Doing so,
we see that the relative errors on the prices at convergercef ¢he same order as the round-off
error on the observed prices. Therefore, it is very natdral the optimization program cannot
improve on this level of error.
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Figure 6: The control points of the bicubic splines

5. Pricing an American option on a basket containing two asde

The aim of this section is to price an American option on a baskntaining two assets. We
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Figure 7: The squared volatility surface obtained by running thebeation program

assume that the prices of the underlying assets obey a sgétorhastic differential equations:

dSy = Sy (dt+ \/ﬁ—pz(d\/\/lt‘i‘pdv\bt)),
dSr = Sx(pedt+ —22= (pdWht 4 dWa)),

14p?

(5.1)

whereWy; andWy; are two independent standard Brownian motions. For siigliwe assume
thato; ando; are positive constants, but generalization to functions;, $,t) ando, (S, S$,t)
can be considered. The paramaiés the correlation factor—1 < p < 1. Also for simplicity, we
assume that the interest ratef the risk-free asset is constant.
Consider an American option on this two assets basket, whegsf function isPy(S;,S). Under
the risk neutral probability, and replacing the time witk tme to maturity, the price of the option
is given byR, = P(Sit, Sx,t), where the functior® is the solution to the set of inequalities:
2 2 2
- %kzlzk,lasag‘% -5 S +P20 1e(0T)§.5>0

! (5.2)
P(S1,$,t) >Py(S1,S) te(0,T], §,% >0,

P(S]_,&,O) = PO(S.I.)SZ) Sla& > 0.

and to the complementarity condition

oP 12 _ P 2 _ 0P te (0,T],
E —_ Ekgl_kJS(S as(as —kZ]-rS(E‘FrP (P—PQ) —O S_L,SZ > 0 (53)

The tensoiE,

2 2p
01 1+p?

2p 2
szo-lo-z 02

0102
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Figure 8: Top : relative errors between the observed prices and thHma@ged withn found after running the

calibration program. A curve corresponds to a given matuiottom: relative round-off error on observed
prices. The two errors are of the same order.

is clearly positive definite.
Consider the payoff function

Po(S1,S) =min((K1—Sp)+, (Ko —S) ). (5.4)

For this choice of, there is a free boundary, which is now a two-dimensiondiaserinR ;. x
R, x [0,T], which separates the zone whé&@,S,S) = Po(S1,S) and where the option should
be exercised and the zone wh@&@,S;,S) > Py(S;,S). Finding this exercise boundary is much
more difficult than for a single underlying asset. Moreotteg, functionP exhibits a singularity on
the free boundary; therefore, when using a discrete methiodricing the American option, the
mesh needs to be refined near the free boundary, which is amownkof the problem.

This motivates the following strategy:
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e We use triangular piecewise linear and continuous finitmelds in the variableS;, S,.

e the mesh is refined adaptively to the solution. By and lar@getisg from a possibly coarse
grid, the idea is to adaptively construct a regular meshdttyges of the triangles are bounded
from below by a fixed constant) in the metric generated by gma@mated Hessian of the
computed solution. Although the theory for this strateggas as clean as that using resid-
uals, this method gives generally very good results. We hiaeel the same adaptive algo-
rithm as in the freeware FreeFem++, by F. Hecht and O. PilaunfiE7], which is available
on http://www.ann.jussieu.fr/ hecht/freefem++.html.igboftware permits to use 2D finite
elements and mesh adaption by means of a user friendly deditzanguage.

¢ the time stepping scheme is an implicit Euler scheme, andhradaption is done every 10
time steps.

e At each time step, one has to solve a discrete variationgusldy corresponding to an
elliptic problem. For that, we use the active set strategpduced in § 3.4.

In Figure 9, we plot the contours of the pricing function abtdifferent dates: one month and
one year to maturity, as well as the adapted mesh. The paesratr = 0.05, K; = K, = 100,
01=02=02,and=;, = 0.150%. In Figure 10, we plot the exercise zone and near the regi@navh
the exercise boundary crosses the lBie= S;. We see that the free boundary has a singularity in
this region, and capturing this singularity really reqeigewell adapted mesh. The method for
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Figure 9: The contours for the price of a put on a basket containing tsges, at = 1 month and = 1
year to maturity. The adapted mesh is plotted too.

computing the discrete solution at each step is the activalgerithm of § 3.4. The parameters
arex = 10" andp= 0. In Figure 11, we plot thé? norm of the increment of the vector containing
the values of the solution at the nodes of the triangulati@tyween two successive iterates of the
semi-smooth Newton method, as a function of the iteratiomlmer. We see that the convergence
is superlinear, and that ten iterations are enough to rethe@orm of the increment to 18.

In Figure 12, we plot the increment of nodes in the active setksolute value) between two
successive iterates of the semi-smooth Newton method, wsctidn of the iteration number. We
see that the increment drops rapidly to some units. In Figj8reve plot the contours of the pricing
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Figure 10: The exercise region one year to maturity (zoom)
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Figure 11: The convergence of the active set strategy
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Figure 12: The convergence of the active set strategy

function for a different payoff function, i.e.

Po(S1, S2) = min((K = S1) 4, (K = S) 1) + (Kmin((S — K) 4, (S~ K)+))

with K = 100. The adapted mesh can be seen on the same Figure. In Efguve plot the graph
of the pricing function eleven months to maturity.
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Figure 13: The contours of the option price and the adapted mesh elegathsito maturity

6. Conclusion

Up to our knowledge, calibration with American options has Imeen much discussed in the
literature. In contrast with European options, it does ®eins possible to use the Dupire forward
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Figure 14: The option price eleven months to maturity

equation, because American option pricing is intrinsicabbnlinear.

We have presented a least square method where the des@mtibdiris computed by solving ad-

joint problems. We have proved that most often, this dicects exactly the gradient of the cost
function. The method is computationally intensive, butahde parallelized in a straightforward

manner. We believe that parallelization is necessary foaetigal use. The algorithm was used on
academical and realistic test cases. We have not takenstetibal data into consideration: they
can be used in the Tychonoff functional for stabilizing tladitration and also for speeding up the
computations, since the volatility is not expected to vaxy much on a daily scale. This remains
to be done.

We have also presented a method for pricing efficiently Aoagrioptions on small baskets, involv-
ing finite elements, mesh adaption and an active set strateggch time step.

Finally, let us mention that calibration of Levy processan also be done with American option.

This is the topic of a work in preparation [2].
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