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1. Introduction

The Black-Scholes model involves a risky asset and a risk-free asset whose price at timet is
S0

t = ert , wherer is the interest rate; it assumes that the price of the risky asset is a solution to the
following stochastic differential equation,

dSt = St(µdt+ σtdBt), (1.1)

whereWt is a standard Brownian motion on a probability space(Ω,A ,P). Hereσt is a positive
number, called thevolatility. In what follows, it will be convenient to work with the squared
volatility ηt = σ2

t .
A European option on the underlying risky asset, is a contract which permits to its owner a

benefitP◦(ST) at timeT The functionP◦ is called the payoff function and the dateT is the maturity.
With the Black-Scholes assumptions, it is possible to provethat the option’s price at timet is given
by

Pt = Pe(St , t) ≡ E
∗(e−r(T−t)P◦(ST)|Ft), (1.2)

where the expectationE∗ is taken with respect to the so-called risk-neutral probability P
∗ (equiv-

alent toP and under whichdSt = St(rdt +
√

ηtdWt), Wt being a standard Brownian motion under
P
∗ andFt being the natural filtration ofWt ). It can be seen that the pricing functionPe solves the

parabolic partial differential equation:

∂Pe

∂t
+

ηS2

2
∂2Pe

∂S2 + rS
∂Pe

∂S
− rPe = 0. (1.3)

In contrast with European options, American options can be exercised any time before maturity:
An American vanilla call (resp. put) option is a contract giving its owner the right to buy (resp.
sell) a share of a specific common stock at a fixed priceK before a certain dateT. More generally,
for a payoff functionP◦, the American option with payoffP◦ and maturityT can be exercised at
anyt < T, yielding the payoffP◦(St).
Using the notion of strategy with consumption, the Black-Scholes model leads to the following
formula for pricing an American option with payoffP◦: under the risk neutral probability,

Pt = P(St , t) ≡ sup
τ∈T t,T

E
∗
(

e−r(τ−t)P◦(Sτ)
∣

∣

∣Ft

)

, (1.4)

whereT t,T denotes the set of stopping times in[t,T] (see [16] for the proof of this formula). It
can be seen that for an American vanilla call on a non dividendpaying stock, the formula (1.4)
coincides with (1.2), so American and European vanilla calls have the same price. This means that
an American vanilla call should not be exercised before maturity.
It can be shown that the priceP of the American put of strikeK and maturityT is given as a solution
to

∂P
∂t

+
ηS2

2
∂2P
∂S2 + rS

∂P
∂S

− rP ≤ 0, P(S, t) ≥ P◦(S), t ∈ [0,T), S> 0,

(
∂P
∂t

+
ηS2

2
∂2P
∂S2 + rS

∂P
∂S

− rP)(P−P◦) = 0 t ∈ [0,T), S> 0,

P(S, t = T) = P◦(S), S> 0,

(1.5)
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American Options. Pricing and Volatility Calibration Yves Achdou

where

P◦(S) = (K−S)+.

The volatility is the difficult parameter of the Black-Scholes model. It is convenient to take it to be
constant but then the computed options’ prices do not match the market prices. Conversely, taking a
family of options available on the market and inverting for each of them the Black-Scholes formula
does not yield a constant volatility: for each option, one obtains a differentimplied volatility, and
the implied volatility is often a convex function of the strike K, which is known in finance as the
smile effect.
There are essentially three ways to improve on the Black-Scholes model with a constant volatility:

• Use a local volatility, i.e. assume that the volatility is a function of time and of the stock
price. Then one hasto calibrate the volatilityfrom the market data, i.e. to find a volatility
function which permits to recover the prices of the options available on the market.

• assume that the volatility is itself a stochastic process, see for example [10, 8].

• generalize the Black-Scholes model by assuming that the spot price is for example a Lévy
process, see [7] and references therein.

In this paper, we deal with the first approach: the calibration problem consists in findingη(S, t)
from the observations of

• the spot priceS◦ today,

• the prices(P̄i)i∈I of a family of options with different maturities and different strikes(Ti,Ki)i∈I .

A way to solve the calibration problem is to

find η ∈ H minimizing J(η)+JR(η), J(η) = ∑
i∈I

|P(S◦,0,Ki ,Ti)− P̄i|2, (1.6)

whereH is a suitable closed subset of a possibly infinite dimensional function space,JR is a suit-
able Tychonoff regularization functional, and whereP(S◦,0,Ki ,Ti) is the price of the option with
strikeKi and maturityTi computed with the local volatilityη.
Note that ifH is not carefully chosen and ifJR = 0, then the problem is unstable too. Note also that
computingJ(η) requires solving #(I) different problems of the type (1.3) for European options or
(1.5) for American options, so this approach is expensive.
There has been a number of valuable studies on the calibration of volatility with European options
of which it is difficult to make a complete account here. In Lagnado and Osher [14, 15] a least
square method is used, the volatility is discretized by splines using matlab and the computation of
the gradient ofJ with respect toη is done either by numerical differences or by Adol-C. In Achdou
et al [3] , calibration with European option is made easier byusing Dupire’s equation. An alterna-
tive to least squares is the pioneering method by Avellanedaet al [6] based on the maximization of
an entropy function via dynamic programming. Up to our knowledge, calibration with American
options has not been very much discussed yet in the mathematical finance literature.
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The paper is divided in five parts: we first give theoretical results on the variational inequality
for pricing American options and on the free boundary which delimitates the region of exercise.
The second part of the paper is devoted to the finite element method for pricing American options.
We show in particular that under some assumptions, there is afree boundary in the discrete problem
too, and we discuss two algorithms for computing the price ofthe American option, both based on
active sets strategies. The third part is devoted to volatility calibration with American options: we
consider problem (1.6) with

JR(η) =
Z T

0

Z S̄

0
a(S∂Sη)2 +b(∂tη)2 +c(S∂2

tSη)2 +d(S2∂2
SSη)2 +e(η−ηg)

2.

The minimization problem is constrained, and optimality conditions are found for (1.6); it is also
proved that differentiability with respect toη holds provided a strict complementarity condition is
satisfied. We give an example of calibration with American options on the FTSE index, where the
squared volatility is discretized with bicubic splines. The results contained in the four first parts
are proved in [1, 5, 4]. In the last part of the paper, we investigate the numerical method used for
pricing in the case when an American option on a portfolio containing two assets. At a given time,
the free boundary is a curve. Two key ingredients for option pricing are discussed: mesh adaptivity
and the algorithm for solving the discrete variational inequality.

2. The variational inequality and the free boundary

All the proofs of the results below can be found in [1].
Calling t the time to maturity, the problem becomes

∂P
∂t

− η(S, t)S2

2
∂2P
∂S2 − rS

∂P
∂S

+ rP ≥ 0, P≥ P◦,

(
∂P
∂t

− η(S, t)S2

2
∂2P
∂S2 − rS

∂P
∂S

+ rP)(P−P◦) = 0,

(2.1)

with Cauchy data

P|t=0 = P◦. (2.2)

We focus on the case of a vanilla put, i.e. the payoff functionis P◦(S) = (K−S)+.
To write the variational formulation of (2.1) (2.2), we needto use the Sobolev space

V = {v∈ L2(R+) : S
dv
dS

∈ L2(R+)}, (2.3)

and we callK the subset ofV:

K = {v∈V,v≥ P◦ in R+}. (2.4)

Since the function ofV are continuous, the inequality in (2.4) has a pointwise meaning. The setK
is a closed and convex subset ofV, because convergence inV implies pointwise convergence. We
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introduce the bilinear format :

at(v,w) =
Z

R+

S2η(S, t)
2

∂v
∂S

∂w
∂S

dS

+

Z

R+

(

−r(t)+ η(S, t)+
S
2

∂η
∂S

(S, t)

)

S
∂v
∂S

w dS

+ r
Z

R+

vw dS

(2.5)

We make the assumptions: there exist two positive constants, η andη such that for allt ∈ [0,T]

and allS∈ R+,
0 < η ≤ η(S, t) ≤ η. (2.6)

There exists a positive constantCη such that for allt ∈ [0,T] and allS∈ R+,

|S∂η
∂S

(S, t)| ≤Cη. (2.7)

These imply that the bilinear format is continuous onV uniformly in t, and Gårding’s inequality :
for a non negative constantλ depending only on̄η, η andCη,

at(v,v) ≥
η
4
|v|2V −λ‖v‖2

L2(R+), ∀v∈V. (2.8)

The weak form of (2.1) is to

find P∈ C 0([0,T];L2(R+))∩L2(0,T;K ) such that∂P
∂t ∈ L2(0,T;V ′), satisfyingP|t=0 = P◦, and

∀v∈ K ,

(

∂P
∂t

(t),v−P(t)

)

+at(P(t),v−P(t))) ≥ 0. (2.9)

Theorem 1. Withη satisfying assumptions (2.6) and (2.7), the problem (2.9) has a unique solution
P which belongs toC 0([0,T]× [0,+∞)) with P(0, t) = K,∀t ∈ [0,T], and is such that
S∂P

∂S, ∂P
∂S ∈ L2(0,T;V), S∂P

∂S ∈C0([0,T ];L2(R+)) and ∂P
∂t ∈ L2(0,T;L2(R+)).

The function P is also greater than or equal to Pe, the price of the vanilla European put.
The quantities‖P‖L2(0,T;V), ‖P‖L∞(0,T;L2(R+)), ‖S∂P

∂x‖L2(0,T;V), ‖∂P
∂S‖L2(0,T;V),

‖S∂P
∂S‖L∞(0,T;L2(R+)), ‖∂P

∂t ‖L2(0,T;L2(R+)), are bounded by constants depending only on K,η̄, η and
Cη.
We have that

−1≤ ∂P
∂S

≤ 0, ∀t ∈ (0,T], a.a. S> 0. (2.10)

There exists a functionγ : (0,T] → [0,K), such that∀t ∈ (0,T), {S s.t. P(S, t) = P◦(S)} = [0,γ(t)].
The functionγ is upper semi-continuous, right continuous in[0,T), and, for each t∈ (0,T], γ has
a left-limit at t.
Calling µ the function µ= ∂P

∂t + AtP, where At is the linear operator: V→ V ′; for all v,w ∈ V,

Atv = −η(S,t)S2

2
∂2v
∂S2 − rS∂v

∂S+ rv, we have

µ= rK1{P=P◦}. (2.11)

In other words, a.e., one of the two conditions P= P◦ and µ= 0 is not satisfied: there is strict
complementarity in (2.1).
Finally, there existsγ0 > 0 depending only on̄η and K such that

γ(t) ≥ γ0, ∀t ∈ [0,T]. (2.12)
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3. Pricing American options with a finite element method

3.1 A finite element method

All the proof of the results below are given in [5].
We localize the problem on(0, S̄), soV becomes

V = {v∈ L2((0, S̄);S
∂v
∂S

∈ L2((0, S̄);v(S̄) = 0}

(whereS̄ is large enough so thatP◦(S̄) = 0), andK = {v∈V,v≥ P◦}. The variational inequality is
(2.9) with new meanings forV, K , andat .
Moreover, if γ0 ∈ (0,K) as in (2.12) is known, one can focus on the smaller interval[S, S̄], with
0≤ S< γ0 and obtain the equivalent weak formulation:

find P∈ L2((0,T,K )∩ C 0([0,T];L2(Ω)), with
∂P
∂t

∈ L2(0,T;V ′)

such thatP(t = 0) = P◦ and (2.9)for allv∈ K , with the new definition of the closed setK :

K = {v∈V,v≥ P◦ in (0, S̄],P = P◦ in (0,S]}. (3.1)

We introduce a partition of the interval[0,T] into subintervals[tn−1, tn], 1 ≤ n ≤ N, with ∆ti =

ti − ti−1, ∆t = maxi ∆ti and a partition of the interval[0, S̄] into subintervalsωi = [Si−1,Si ], 1≤ i ≤
Nh +1, such that 0= S0 < S1 < · · · < SNh < SNh+1 = S̄. The size of the intervalωi is calledhi and
we seth = maxi=1,...,Nh+1hi . The meshTh of [0, S̄] is the set{ω1, . . . ,ωNh+1}. In what follows, we
will assume that both the strikeK and the real numberS coincide with nodes ofTh: there exist
α < κ, 0≤ α < κ < Nh+1 such thatSκ = K andSα−1 = S. We define the discrete spaceVh by

Vh =
{

vh ∈V, ∀ω ∈ Th,vh|ω ∈ P1(ω)
}

, (3.2)

whereP1(ω) is the space of linear functions onω.
SinceK is a node ofTh, P◦ ∈Vh, and sinceS is also a node ofTh, we can define the closed subset
Kh of Vh by

Kh = {v∈Vh, v≥ P◦ in [0, S̄), v = P◦ in [0,S]}
= {v∈Vh, v(Si) ≥ P◦(Si), i = 0, . . . ,Nh+1, v(Si) = P◦(Si), i < α}.

(3.3)

The discrete problem arising from an implicit Euler scheme is:

find (Pn)0≤n≤N ∈ Kh satisfying

P0 = P◦, (3.4)

and for alln, 1≤ n≤ N,

∀v∈ Kh,
(

Pn−Pn−1,v−Pn)+ ∆tnatn(P
n,v−Pn) ≥ 0. (3.5)
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Considerλ such that Gårding’s inequality (2.8) holds, and take∆t < 1
λ , there exists a uniquePn

satisfying (3.5).
Let (wi)i=0,...Nh be the nodal basis ofVh, and letM and Am in R

(Nh+1)×(Nh+1) be the mass and
stiffness matrices defined by

M i, j = (wi ,w j),Am
i, j = atm(w j ,wi), 0≤ i, j ≤ Nh.

Calling

Un = (Pn(S0), . . . ,P
n(SNh))

T andU0 = (P◦(S0), . . . ,P◦(SNh))
T ,

(3.5) is equivalent to

(M(Un−Un−1)+ ∆tnAnUn)i ≥ 0, for i ≥ α,

Un
i = U0

i for i < α,

Un ≥ U0,

(Un−U0)T(M(Un−Un−1)+ ∆tnAnUn) = 0.

(3.6)

We callMα, respectivelyAn
α, the block ofM , respectivelyAn, corresponding toα ≤ i, j ≤ Nh.

3.2 The discrete exercise boundary

One may ask if there is a well defined exercise boundaryt → γh(t) also in the discrete problem.
A positive answer has been given by Jaillet et al [13] in the case of a constant volatility, an implicit
Euler scheme and a uniform mesh in the logarithmic variable.The main argument of the proof lies
in the fact that the solution to the discrete problem is non decreasing with respect to the variablet.
With a local volatility, this may not hold (see the numericalexample below). The result of Jaillet
et al has been completed for a local volatility in [5], in the special case when the mesh is uniform
in the variableS: here too, the discrete problem has a free boundary. The proof does not rely
any longer on the monotonic character of the discrete solution with respect tot but on the discrete
analogue of the bounds (2.10), i.e.−1≤ ∂P

∂S ≤ 0. This is proved by studying a suitable penalized
problem (which is the discrete version of a semilinear parabolic equation with a non decreasing
and convex non linearity) and by using a discrete maximum principle on the partial derivative with
respect toS(for this reason, a uniform mesh is needed). We can summarizethis by

Theorem 2. Letη verify (2.6) and (2.7), and choose∆t < 1
2λ , withλ given in (2.8). Assume that the

grid Th is uniform and that S> 0. Assume also that the parameters h andh2

∆t are small enough so
that the matricesAn

α andMα +∆tnAn
α are tridiagonal irreducible M-matrices for all n,1≤ n≤ N.

There exist N real numbersγn
h, 1≤ n≤ N, such that

S≤ γn
h < K,

γn
h is a node ofTh,

∀i,0≤ i ≤ Nh, Pn(Si) = P◦(xi) ⇔ Si ≤ γn
h.

(3.7)

We believe that this may be extended to somewhat more generalmeshes.
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3.3 A front-tracking algorithm

Here, we propose an algorithm for computing the solution of (3.5) assuming that the free
boundary is the graph of a function. In our experience, this algorithm, based on tracking the free
boundary, is more robust (and slightly more expensive) thanthe Brennan and Schwartz algorithm
(see [13]). Since the free boundary is the graph of a function, the idea is to look forγn

h by

• Start fromγn
h = γn−1

h ,

• solve the discrete problem corresponding to

Pn−Pn−1

∆tn
− η(S, tn)S2

2
∂2Pn

∂S2 − rS
∂Pn

∂S
+ rPn = 0 for γn

h < S< S̄,

Pn = P◦ for 0≤ S≤ γn
h,

andPn(S̄) = 0,

• if Pn satisfies (3.5), stop else shift the pointγn
h to the next node on the mesh left/right accord-

ing to which constraint is violated byPn.

With the notations introduced above, the algorithm for computing Pn
h is as follows:

Algorithm
choosek such thatγn−1

h = Sk; set found=false;
while(not found)
.. solve

(M(Un−Un−1)+ ∆tnAnUn)i = 0, for i ≥ k,
Un

i = U0
i for i < k.

(3.8)

.. if ((Un−U0)k+1 < 0 )

.. found=false;k = k+1;

.. else

.. computea = (M(Un−Un−1)+ ∆tnAnUn)k−1;

.. if (a < 0)

.. found=false; k = k−1;

.. else found=true

In our tests, we have computed the average (over the time steps) number of iterations to obtain
the position of the free boundary: it was found that (with a rather fine time-mesh), this number is
smaller than 2.

3.4 A regularized active set strategy

The algorithm above is not easy to generalize in higher dimensions. For an algorithm based on
active sets and generalizable in any dimension, we have to regularize first the problem. Following
[12], we first go back to the semi-discrete problem: findPn ∈ K such that

∀v∈ K ,
(

Pn−Pn−1,v−Pn)+ ∆tnatn(P
n,v−Pn) ≥ 0.
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For any positive constantc, this is equivalent to findingPn ∈V and a Lagrange multiplierµ∈V ′

such that

∀v∈V,

(

Pn−Pn−1

∆tn
,v

)

+atn(P
n,v)−〈µ,v〉 = 0,

µ= max(0,µ−c(Pn−P0)).

(3.9)

When using an iterative method for solving (3.9), i.e. when constructing a sequence(Pn,m,µm) for
approximating(Pn,µ), the Lagrange multiplierµm may not be a function if the derivative of the
Pn,m jumps, whereasµ is generally a function. Therefore, a dual method (i.e. an iterative method
for computingµ) may be difficult to use. As a remedy, K.Ito and K.Kunisch [12]consider a one
parameter family of regularized problems based on smoothing the equation forµ by

µ= αmax(0,µ−c(Pn−P0)), (3.10)

for 0 < α < 1, which is equivalent to

µ= max(0,−χ(Pn−P0)), (3.11)

for χ = cα/(1−α) ∈ (0,+∞). We may consider a generalized version of (3.11):

µ= max(0, µ̄−χ(Pn−P0)), (3.12)

whereµ̄ is a fixed function. This turns to be useful when the complementarity condition is not
strict.
It is now possible to study the fully regularized problem

∀v∈V,

(

Pn−Pn−1

∆tn
,v

)

+atn(P
n,v)−〈µ,v〉 = 0,

µ= max(0, µ̄−χ(Pn−P0)),

(3.13)

and prove that it has a unique solution, withµ a square integrable function. A primal-dual active
set algorithm for solving (3.13) is

Primal-dual active set algorithm

1. ChoosePn,0, setk = 0

2. Loop

(a) Set
A −,k+1 = {S: µ̄k(S)−χ(Pn,k(S)−P0(S)) > 0}

andA +,k+1 = (0, S̄)\A −,k+1.

(b) Solve forPn,k+1 ∈V: ∀v∈V,

(

Pn,k+1−Pn−1

∆tn
,v

)

+atn(P
n,k+1,v)− (µ̄−χ(Pn,k+1−P0),1A −,k+1v) = 0. (3.14)
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(c) Set

µk+1 =

{

0 on A +,k+1,

µ̄−χ(Pn,k+1−P0) on A −,k+1 (3.15)

(d) Setk = k+1.

Calling An the operator fromV to V ′: 〈Anv,w〉 =
(

v
∆tn

,w
)

+ atn(v,w) andF : V ×L2(R+) →
V ′×L2(R+)

F(v,µ) =

(

Anv+µ− Pn−1

∆tn
µ−max(0, µ̄−χ(v−P0))

)

,

it is proved in [12] thatG(v,µ) : V ×L2(R+) →V ′×L2(R+) defined by

G(v,µ)h =

(

Anh1 +h2

h2−χ1{µ̄−χ(v−P0)>0}h1

)

is a generalized derivative ofF in the sense that

lim
‖h‖→0

‖F(v+h1,µ+h2)−F(v,µ)−G(v+h1,µ+h2)h‖
‖h‖ = 0;

Note that

G(Pn,k,µk)h =

(

Anh1 +h2

h2−χ1A −,k+1h1

)

.

Thus the primal-dual active set algorithm above can be seen as a semi-smooth Newton method
applied toF, i.e.

(Pn,k+1,µk+1) = (Pn,k,µk)+G−1(Pn,k,µk)F(Pn,k,µk). (3.16)

Indeed, calling(δPn,δµ) = (Pn,k+1−Pn,k,µk+1−µk), it is straightforward to see that in the primal-
dual active set algorithm, we have

AnδPn + δµ = −AnP
n,k−µk +

Pn−1

∆tn
,

δµ = −µk onA +,k+1,

δµ−χδPn = −µk + µ̄−χ(Pn,k−P0) onA −,k+1,

which is precisely (3.16).
In [12], Ito and Kunish, by using the results proved in [11], establish that the primal-dual active set
algorithm converges from any initial guess, and that if the initial guess is sufficiently close to the
solution of (3.13), then the convergence is superlinear.
To compute numerically the solution of (3.9), it is possibleto compute successively the solu-
tions (Pn(χℓ),µ(χℓ)) of (3.13) for a sequence of parameters(χℓ) converging to+∞: to compute
(Pn(χℓ+1),µ(χℓ+1)), one uses the primal-dual active set algorithm with initialguess(Pn(χℓ),µ(χℓ)).

Notice that it is possible to use the same algorithm for the fully discrete problem. Convergence
results hold in the discrete case if there is a discrete maximum principle. The algorithm amounts
to solving a sequence of systems of linear equations, and thematrix of the system varies at each
iteration.
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3.5 Mesh adaption

One of the key features of the finite element method is that it permits to compute reliable and
often very efficient error indicators for the error between the exact and discrete solutions. We do
not wish to develop much on this topic here, because this needs long and technical arguments. We
rather refer to [4]. The strategy relies on the fact that the error due to the time discretization can
be estimated separately: there are indicators for the errordue to time discretization, and at each
time step, indicators for the error due to the discretization with respect to the price variable. The
error indicators are local. Therefore, they tell us where the time grid, and the mesh in theSvariable
should be refined.
To illustrate this, we consider an American put, with strikeK = 100. The interest rate is 0.04 as
above, but the volatility is local and we choose:

σ(S, t) = 0.1+0.1∗1
100(t−0.5)2+

(S−90)2

100 <2
(S, t),

so the volatility is piecewise constant and takes the value 0.2 in an ellipse and 0.1 outside. With
such a choice, the exercise boundary is expected to change slope as it enters and comes out the
region whereσ = 0.2. On Figure 1, we plot the volatility surface as a function ofS and t. The
exercise boundary is displayed on Figure 3: we see that the free boundary does change slope when
the volatility jumps. We see also that refinement is crucial in order to catch properly the exercise
boundary. Note that the functionγ is not monotone. On Figure 2, two meshes at displayed: we see
that the refinement follows the free boundary. On Figure 4, the error indicators with respect toS
are plotted: here again, we see that the error indicators arelarge near the free boundary, where the
functionP is singular.
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Figure 1: The local volatility surface

4. Calibration with American options

The calibration problem consists in findingη from the observations of

• the spot priceS◦ today,
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Figure 2: Two successive mesh refinements: the mesh is refined along theexercise boundary, see next figure

• the prices(P̄i)i∈I of a family of American puts with different maturities and different strikes
(Ti ,Ki)i∈I .

We callT = maxi∈I Ti . We assume that for anyi ∈ I , the maturityTi coincides with some node of
the time grid, i.e. there existsNi ≤ N such thattNi = Ti. We also assume that for anyi ∈ I , the strike
Ki is a node of theS-grid, i.e. there existsκi < Nh such thatKi = Sκi .
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Figure 3: Left: the exercise boundary for the final mesh and the ellipsewhere the volatility jumps: there are
two singularities corresponding to the jumps of volatility. Right: the exercise boundaries for different mesh
refinements
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Figure 4: Indicators for the error due to the discretization with respect toS

We consider the least square problem:

find η ∈ H minimizing J(η)+JR(η), J(η) = ∑
i∈I

|PNi
i (S◦)− P̄i|2, (4.1)

whereH is a suitable closed subset of a possibly infinite dimensional function space,JR is a suitable
Tychonoff regularization functional, and

find (Pn
i )0≤n≤Ni ,P

n
i ∈ Kh,i satisfying

P0
i = P◦,i , (4.2)

and for alln, 1≤ n≤ Ni,

∀v∈ Kh,i ,
(

Pn
i −Pn−1

i ,v−Pn
i

)

+ ∆tnaTi−tn(P
n
i ,v−Pn

i ) ≥ 0, (4.3)
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where= P◦,i = (Ki −S)+. We callµn
i, j the real number

µn
i, j =

(

Pn
i −Pn−1

i ,w j −Pn
i

)

+ ∆tnaTi−tn(P
n
i ,w j −Pn

i ). (4.4)

4.1 Optimality conditions

In [1], the inverse problem corresponding to the continuouscounterpart of (4.3) is studied and
optimality conditions are given for suitable choices ofH andJR. Here, we aim at finding optimality
conditions for the fully discrete problem (4.1).
In order to find optimality conditions for the present least-square problem, we replace the state
equations (4.2) (4.3) by the above mentioned penalized problem, whose penalty parameter, called
ε, will tend to 0. Doing so, we obtain a new least square problem, for which necessary optimality
conditions are easily found. Then, we pass to the limit asε goes to zero: we obtain the following
result:

Theorem 3. Let η∗ be a minimizer of (4.1) which can be found as a limit of a sequence η∗
ε of

minimizers for the penalized problems, and let(P∗,n
i )i∈I be the solutions to (4.2) (4.3) withη = η∗.

There exist y∗,ni ∈ Ṽh, andαn
i, j ∈ R, 1≤ n≤ Ni, ρ ≤ j ≤ Nh, i ∈ I, such that∀v∈ Ṽh,

(

y∗,Ni
i ,v

)

+ ∆tNi

(

a∗0(v,y
∗,Ni
i )+

Nh

∑
j=ρ

αNi
i, j v(Sj)

)

= 2(P∗,Ni
i (S◦)− P̄i)v(S◦),

(

y∗,ni −y∗,n+1
i ,v

)

+ ∆tn

(

a∗Ti−tn(v,y
∗,n
i )+

Nh

∑
j=ρ

αn
i, j v(Sj)

)

= 0, 1≤ n < N,

(4.5)

with, for all j,n, ρ ≤ j ≤ Nh, 1≤ n≤ Ni,

αn
i, j(P

∗,n
i (Sj)−P◦(Sj)) = 0, µ∗,ni, j y∗,ni (Sj) = 0, αn

i, jy
∗,n
i (Sj) ≥ 0,

such that for anyη ∈ H , noting byδη = η−η∗,

0≤ < DJR(η∗),δη >

− 1
2 ∑

i∈I

Ni

∑
n=1

∆tn
Nh

∑
j=ρ

S2
j δη(Sj ,Ti − tn)y

∗,n
i (Sj)









P∗,n
i (Sj)−P∗,n

i (Sj−1)

h j

+
P∗,n

i (Sj)−P∗,n
i (Sj+1)

h j+1









.

4.2 Differentiability

Proposition 1. Take∆t ≤ 1
2λ with λ as in (2.8). Assume that for allη ∈ H verifying (2.6) (2.7),

the the parameters h and h2

minn ∆tn
are small enough so that the matricesAn

l and M l + ∆tnAn
l are

tridiagonal irreducible M-matrices for all n,1≤ n≤ N and l,α ≤ l < Nh. Letη ∈ H be such that
the strict complementarity conditions

Pn
i (Sj) > P◦,i(Sj) ⇔ µn

i, j = 0, (4.6)
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for all i ∈ I and for all j,ρ≤ j ≤Nh, where Pni is the solution to (2.3) (2.4), and µn
i, j =

(

Pn
i −Pn−1

i ,w j
)

+

∆tnaT−tn(P
n
i ,w j). The functional J is differentiable atη, and for any admissible variationχ of η,

< DJ(η),χ >=

− 1
2 ∑

i∈I

N

∑
n=1

∆tn
Nh

∑
j=ρ

S2
j χ(Sj ,T − tn)y

n
i (Sj)









Pn
i (Sj)−Pn

i (Sj−1)

h j

+
Pn

i (Sj)−Pn
i (Sj+1)

h j+1









.
(4.7)

where yni = yn(η)i ∈ Ṽh, αn
i, j ∈ R, ρ ≤ j ≤ Nh, are the solution to:∀v∈ Ṽh,

(

yNi
i ,v
)

+ ∆tNi

(

a0(v,y
Ni
i )+

Nh

∑
j=ρ

αNi
i, jv(Sj )

)

= 2(PNi
i (S◦)− P̄i)v(S◦),

(

yn
i −yn+1

i ,v
)

+ ∆tn

(

aTi−tn(v,y
n
i )+

Nh

∑
j=ρ

αn
i, j v(Sj)

)

= 0, 1≤ n < N,

with

αn
i, j (P

n
i (Sj)−P◦(Sj)) = 0, µn

i, j y
n
i (Sj) = 0, αn

i, j y
n
i (Sj) ≥ 0.

4.3 Algorithm

We describe the simplest possible projected descent methodin the spaceY, where the descent
direction is computed thanks to the considerations above. The degrees of freedom of a function
χ ∈Y are the values ofχ at some nodes of a grid and we call them(Λ∗

ℓ(χ))1≤ℓ≤L, (Λ∗
ℓ is the linear

form onY which mapsχ to its value at a given node). We endowY with the basis(Λℓ(χ))1≤ℓ≤L

defined byΛ∗
ℓ(Λk) = δℓk, and we define the inner product(∑L

ℓ=1aℓΛℓ,∑L
ℓ=1bℓΛℓ)Y = ∑L

l=1 aℓbℓ.

Algorithm

• Chooseη ∈ H , ε > 0 andρ > 0, sete= +∞.

• While e> ε do

1. Compute(Pi)i∈I by (4.2) (4.3), by using for example one of the algorithms proposed in
§3.3 andJ(η)+JR(η), J(η) = ∑i∈I |PNi

i (S◦)− P̄i|2,
2. For alli ∈ I , compute(yn

i )1≤n≤Ni , yn
i ∈ Ṽh satisfying (4.5).

3. computeζ ∈Y such that for allχ ∈Y,

(ζ,χ)Y

= −1
2∑

i∈I

Ni

∑
n=1

∆tn
Nh

∑
j=ρ

S2
j χ(Sj ,Ti − tn)y

n
i (Sj)

( un
i (Sj )−un

i (Sj−1)
hj

+
un

i (Sj )−un
i (Sj+1)

hj+1

)

.
(4.8)

4. setη̃ = πH (η−ρ(gradJR(η)+ζ)), e= ‖η̃−η‖, η = η̃, whereπH is the projection on
H .
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• end_do

The complete justification of the algorithm above is still anopen question because it is not proved
that−gradJR(η)− ζ is always a descent direction. However, from Proposition 1,we know that
most often,ζ is exactly gradJ(η): in this case, the algorithm coincides with a projected gradient
method.
In the numerical tests below, we have used variants of this algorithm (an interior point algorithm
due to J. Herskovits[9]-it is a quasi-Newton algorithm which can handle general constraints), which
have proved very robust. In particular, we never experienced breakups caused by the fact that the
directionζ is not a descent direction.

Parallelism The algorithm above can be parallelized in a very natural wayon a distributed mem-
ory machine withNp processors, because the computations of the pairs(Pi,yi), i ∈ I are independent
from each other. We splitI in I = ∪Np

k=1Ik in order to balance the amount of work among the proces-
sors, the processor labelledk being responsible for the sums overi ∈ Ik in J(η) and (4.8). Note that
the complexity of the computation ofPi,yi depends oni, so load balancing is not straightforward.
The data forη andζ are replicated on theNp processors. The processor labelledk computes its
own contribution toJ(η) and to (4.8), i.e. the sums overi ∈ Ik, in an independent manner, then
communications are needed for assembling the sums overi ∈ I in J(η) and in (4.8).
For programming, we have usedC++ with the message passing librarympi.

4.4 Results with American Puts on the FTSE Index

In this paragraph, we consider American puts on the FTSE index. The data correspond to June
6, 2001. We thank José Da Fonseca for providing us with the data.
The price of the underlying asset isx◦ = 5890. The American puts correspond to four different
maturities: 0.122,0.199,0.295,0.55 years. We setT = 0.55. The interest rater varies with time,
so r is replaced byr(t) in (4.3), and this function is known. For these maturities, the prices of the
observed options vs strike are plotted on Figure 5. The aim isto find the volatility surface from
these prices. The volatility is discretized by functions that are the sum of

• a piecewise affine function in theS-variable which is constant in the regionsS< 1000 and
S> 9000 and affine in the region 1000< S< 9000

• a bicubic spline in the region 1000< S< 9000, |t −T/2| < T/2+ 0.1, whose value and
derivatives vanish on the boundary of this rectangle. The control points of the spline are
plotted on Figure 6, where the time variable isT − t. We see that the control points are not
uniformly distributed: the mesh is refined for small timest and at the money.

The grid foru is non uniform with 745 nodes in theS-direction and 210 nodes in thet direction.
For simplicity, the grid is chosen in such a way that the points (Ti ,Ki)i∈I coincide with some grid
nodes.
The (squared) volatility obtained at convergence is displayed on Figure 7: the surface has a smile
shape. The relative errors between the observed prices and those computed at convergence are
plotted on Figure 8, top. They are rather large for small values ofK. However, we have to realize
that the available observed prices are themselves given with a round-off error, which is exactly 0.5.
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Figure 5: The data for the inverse problem: the prices of a family of American puts on the FTSE index

On Figure 8, bottom, we have plotted the relative round-off error on the observed prices. Doing so,
we see that the relative errors on the prices at convergence are of the same order as the round-off
error on the observed prices. Therefore, it is very natural that the optimization program cannot
improve on this level of error.

Figure 6: The control points of the bicubic splines

5. Pricing an American option on a basket containing two assets

The aim of this section is to price an American option on a basket containing two assets. We
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Figure 7: The squared volatility surface obtained by running the calibration program

assume that the prices of the underlying assets obey a systemof stochastic differential equations:

dS1t = S1t(µ1dt+ σ1√
1+ρ2

(dW1t + ρdW2t)),

dS2t = S2t(µ2dt+ σ2√
1+ρ2

(ρdW1t +dW2t)),
(5.1)

whereW1t andW2t are two independent standard Brownian motions. For simplicity, we assume
that σ1 andσ2 are positive constants, but generalization to functionsσ1(S1,S2, t) andσ2(S1,S2, t)
can be considered. The parameterρ is the correlation factor:−1 < ρ < 1. Also for simplicity, we
assume that the interest rater of the risk-free asset is constant.
Consider an American option on this two assets basket, whosepayoff function isP0(S1,S2). Under
the risk neutral probability, and replacing the time with the time to maturity, the price of the option
is given byPt = P(S1t ,S2t , t), where the functionP is the solution to the set of inequalities:

∂P
∂t

− 1
2

2

∑
k,l=1

Ξk,l SkSl
∂2P

∂Sk∂Sl
−

2

∑
k=1

rSk
∂P
∂Sk

+ rP ≥ 0 t ∈ (0,T], S1,S2 > 0,

P(S1,S2, t) ≥ P0(S1,S2) t ∈ (0,T], S1,S2 > 0,

P(S1,S2,0) = P0(S1,S2) S1,S2 > 0.

(5.2)

and to the complementarity condition
(

∂P
∂t

− 1
2

2

∑
k,l=1

Ξk,l SkSl
∂2P

∂Sk∂Sl
−

2

∑
k=1

rSk
∂P
∂Sk

+ rP

)

(P−P0) = 0
t ∈ (0,T],

S1,S2 > 0.
(5.3)

The tensorΞ,

Ξ =

(

σ2
1

2ρ
1+ρ2 σ1σ2

2ρ
1+ρ2 σ1σ2 σ2

2

)
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Figure 8: Top : relative errors between the observed prices and those obtained withη found after running the
calibration program. A curve corresponds to a given maturity. Bottom: relative round-off error on observed
prices. The two errors are of the same order.

is clearly positive definite.
Consider the payoff function

P0(S1,S2) = min((K1−S1)+,(K2−S2)+). (5.4)

For this choice ofP0, there is a free boundary, which is now a two-dimensional surface inR+ ×
R+ × [0,T], which separates the zone whereP(t,S1,S2) = P0(S1,S2) and where the option should
be exercised and the zone whereP(t,S1,S2) > P0(S1,S2). Finding this exercise boundary is much
more difficult than for a single underlying asset. Moreover,the functionP exhibits a singularity on
the free boundary; therefore, when using a discrete method for pricing the American option, the
mesh needs to be refined near the free boundary, which is an unknown of the problem.
This motivates the following strategy:
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• we use triangular piecewise linear and continuous finite elements in the variablesS1,S2.

• the mesh is refined adaptively to the solution. By and large, starting from a possibly coarse
grid, the idea is to adaptively construct a regular mesh (theangles of the triangles are bounded
from below by a fixed constant) in the metric generated by an approximated Hessian of the
computed solution. Although the theory for this strategy isnot as clean as that using resid-
uals, this method gives generally very good results. We haveused the same adaptive algo-
rithm as in the freeware FreeFem++, by F. Hecht and O. Pironneau [17], which is available
on http://www.ann.jussieu.fr/ hecht/freefem++.html. This software permits to use 2D finite
elements and mesh adaption by means of a user friendly dedicated language.

• the time stepping scheme is an implicit Euler scheme, and mesh adaption is done every 10
time steps.

• At each time step, one has to solve a discrete variational inequality corresponding to an
elliptic problem. For that, we use the active set strategy introduced in § 3.4.

In Figure 9, we plot the contours of the pricing function at two different dates: one month and
one year to maturity, as well as the adapted mesh. The parameters arer = 0.05, K1 = K2 = 100,
σ1 = σ2 = 0.2, andΞ1,2 = 0.15σ2

1. In Figure 10, we plot the exercise zone and near the region where
the exercise boundary crosses the lineS1 = S2. We see that the free boundary has a singularity in
this region, and capturing this singularity really requires a well adapted mesh. The method for

Figure 9: The contours for the price of a put on a basket containing two assets, att = 1 month andt = 1
year to maturity. The adapted mesh is plotted too.

computing the discrete solution at each step is the active set algorithm of § 3.4. The parameters
areχ = 107 andµ̄= 0. In Figure 11, we plot theℓ2 norm of the increment of the vector containing
the values of the solution at the nodes of the triangulation,between two successive iterates of the
semi-smooth Newton method, as a function of the iteration number. We see that the convergence
is superlinear, and that ten iterations are enough to reducethe norm of the increment to 10−9.
In Figure 12, we plot the increment of nodes in the active set (in absolute value) between two
successive iterates of the semi-smooth Newton method, as a function of the iteration number. We
see that the increment drops rapidly to some units. In Figure13, we plot the contours of the pricing
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Figure 10: The exercise region one year to maturity (zoom)
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Figure 11: The convergence of the active set strategy
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Figure 12: The convergence of the active set strategy

function for a different payoff function, i.e.

P0(S1,S2) = min((K −S1)+,(K −S2)+)+ (K min((S1−K)+,(S2−K)+))
1
2

with K = 100. The adapted mesh can be seen on the same Figure. In Figure14, we plot the graph
of the pricing function eleven months to maturity.

Figure 13: The contours of the option price and the adapted mesh eleven months to maturity

6. Conclusion

Up to our knowledge, calibration with American options has not been much discussed in the
literature. In contrast with European options, it does not seem possible to use the Dupire forward
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Figure 14: The option price eleven months to maturity

equation, because American option pricing is intrinsically nonlinear.
We have presented a least square method where the descent direction is computed by solving ad-
joint problems. We have proved that most often, this direction is exactly the gradient of the cost
function. The method is computationally intensive, but it can be parallelized in a straightforward
manner. We believe that parallelization is necessary for a practical use. The algorithm was used on
academical and realistic test cases. We have not taken yet historical data into consideration: they
can be used in the Tychonoff functional for stabilizing the calibration and also for speeding up the
computations, since the volatility is not expected to vary too much on a daily scale. This remains
to be done.
We have also presented a method for pricing efficiently American options on small baskets, involv-
ing finite elements, mesh adaption and an active set strategyat each time step.
Finally, let us mention that calibration of Levy processes can also be done with American option.
This is the topic of a work in preparation [2].
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