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Introduction

We consider a nonlinear system in R
m controlled by two players

ẏ(t) = f (y(t),a(t),b(t)), y(0) = x, (1)

and we denote with yx(·) the trajectory starting at x. We are also given a bounded, uniformly
continuous running cost l, and we are interested in the payoffs associated to the long time average
cost (briefly, LTAC), namely,

J∞(x,a(·),b(·)) := limsup
T→∞

1
T

Z T

0
l(yx(t),a(t),b(t))dt,

J∞(x,a(·),b(·)) := liminf
T→∞

1
T

Z T

0
l(yx(t),a(t),b(t))dt.

We denote with u− valJ∞(x) (respectively, l − valJ∞(x)) the upper value of the zero-sum game
with payoff J∞ (respectively, the lower value of the game with payoff J∞) which the 1st player a(·)

wants to minimize while the 2nd player b(·) wants to maximize, and the values are in the sense of
Variya-Roxin-Elliott-Kalton. We say that the LTAC game is ergodic if

u−valJ∞(x) = l −valJ∞(x) = λ ∀x,

for some constant λ.
The terminology is motivated by the analogy with classical ergodic control theory, see, e.g.,

[11, 26, 14, 10, 22, 7, 8], and by the fact that for uncontrolled system and cost the game is ergodic
for all continuous l if the dynamical system ẏ = f (y) is ergodic with a unique invariant measure
(see Proposition 13 of [3] for a precise statement). Similar problems were already studied for
some games, in particular by Fleming and McEneaney [19] in the context of risk-sensitive control,
Carlson and Haurie [13] within the turnpike theory, and Kushner [27] for controlled nondegenerate
diffusion processes. There is a large literature on related problems for dicrete-time games, see the
recent survey by Sorin [33].

In order to have a compact state space we assume that the data f and l are Z
m-periodic.

First of all we show the connection between the ergodicity of the LTAC game and the existence of
a constant and uniform long-time limit of the lower and upper value functions of the finite horizon
games with the same running cost. We call this property ergodicity of the lower (respectively,
upper) game. Then we prove that the lower game is ergodic with limit λ if and only if the lower
value of the discounted infinite horizon game with payoff

δ
Z ∞

0
l(yx(t),a(t),b(t))e−δt dt

converges uniformly to λ as the discount rate δ tends to 0. Moreover, this is also equivalent to the
existence of a Z

m-periodic viscosity χ to the Hamilton-Jacobi-Isaacs equation

λ+min
b

max
a

{− f (y,a,b) ·∇χ− l(y,a,b)} = 0 ,

and similar statements hold for the upper value.
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Next we describe two sets of conditions ensuring the previous facts and therefore the er-
godicity. The first is a bounded-time controllability property of the system by one of the players,
uniformly with respect to the behavior of the opponent. It is a generalization to games of a con-
dition used for systems with a single controller by Grüne [22], Arisawa [7], and Artstein and
Gaitsgory [9].

Different from the first, the second set of conditions is symmetric for the two players. We
assume that some state variables yA are asymptotically controllable by the first player, and the
remaining variables yB are asymptotically controllable by the second (see Section 2 for the precise
definition). In this case neither player can control the whole state vector y = (yA,yB). We further
assume the running cost depends only on yA and yB and has a saddle point, namely,

min
yA

max
yB

l(yA,yB) = max
yB

min
yA

l(yA,yB) =: l,

Then we show that the LTAC game has the value λ = l.
In the last section we also show that for systems affected by a non-degenerate white noise the

game is ergodic with no controllability assumptions on either player (see [27] for related results).
Our methods rely heavily on the Hamilton-Jacobi-Isaacs equations associated to the games,

in the framework of the theory of viscosity solutions. We follow ideas of authors such as P.-L.
Lions and L.C. Evans, see [28, 16, 10, 8], and their developments in our papers [3, 4].

Undiscounted infinite horizon control problems arise in many applications to economics
and engineering, see [14, 11, 26] and [13, 19, 33] for games. Our additional motivation is that
ergodicity plays a crucial role in the theory of singular perturbation problems for the dimension
reduction of multiple-scale systems [25, 11, 26, 24, 21, 34, 35, 30] and for the homogenization
in oscillating media [28, 16, 17, 1, 23, 29, 12, 6]. A general principle emerging in the papers
[9, 2, 3, 4] is that an appropriate form of ergodicity of the fast variables (for frozen slow variables)
ensures the convergence of the singular perturbation problem, in a suitable sense.

The paper is organized as follows. Section 1 describes the connection between the ergod-
icity of the LTAC game and the ergodicity of the lower and upper game. Section 2 studies the
ergodicity of the finite horizon games. Section 3 presents some examples. In Section 4 we give
some extensions of the results of Section 2 to diffusion processes controlled by two players, and
we prove the ergodicity result for nondegenerate noise.

The full proofs of the results of this paper can be found in [5].

1. The long-time-average-cost game and ergodicity

About the system (1) and the cost we assume throughout the paper that f : R
m×A×B→R

m

and l : R
m ×A×B → R are continuous and bounded, A and B are compact metric spaces, f is

lipschitzean in x uniformly in a,b. In this section we do not assume the compactness of the state
space.

We consider the cost funtional

J(T,x) = J(T,x,a(·),b(·)) :=
1
T

Z T

0
l(yx(t),a(t),b(t))dt,

where yx(·) is the trajectory corresponding to a(·) and b(·). We denote with A and B , respectively,
the sets of open-loop (measurable) controls for the first and the second player, and with Γ and
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∆, respectively, the sets of nonanticipating strategies for the first and the second player, see, e.g.,
[18, 10] for the precise definition. Finally, we define the upper and lower values for the finite
horizon game with average cost

u−valJ(T,x) := sup
β∈∆

inf
a∈A

J(T,x,a,β[a]),

l −valJ(T,x) := inf
α∈Γ

sup
b∈B

J(T,x,α[b],b),

and for the LTAC game

u−valJ∞(x) := sup
β∈∆

inf
a∈A

limsup
T→∞

J(T,x,a,β[a]),

l −valJ∞(x) := inf
α∈Γ

sup
b∈B

liminf
T→∞

J(T,x,α[b],b).

We say that the the lower game is (uniformly) ergodic if the long time limit of the finite horizon
value exists, uniformly in x, and it is constant, i.e.,

l −valJ(T, ·) → λ as T → ∞ uniformly in R
m.

Similarly, the upper game is ergodic if

u−valJ(T, ·) → Λ as T → ∞ uniformly in R
m.

Theorem 1 If the lower game is ergodic, then

l −valJ∞(x) = lim
T→∞

l −valJ(T,x) = λ ∀x ∈ R
m; (1.1)

if the upper game is ergodic, then

u−valJ∞(x) = lim
T→∞

u−valJ(T,x) = Λ ∀x ∈ R
m. (1.2)

We recall the classical Isaacs’ condition, or solvability of the small game,

H(y, p) := min
b∈B

max
a∈A

{− f (y,a,b)· p−l(y,a,b)}= max
a∈A

min
b∈B

{− f (y,a,b)· p−l(y,a,b)}, ∀y, p∈R
m.

(1.3)
It is well known that it implies the equality of the upper and the lower value of the finite horizon
game, that is, the existence of the value of that game, which we denote with valJ(T,x), see [18, 10].
Therefore we immediately get the following consequence of Theorem 1.

Corollary 1 Assume (1.3) and that either the lower or the upper game is ergodic. Then the LTAC
game is ergodic, i.e.,

l −valJ∞(x) = u−valJ∞(x) = lim
T→∞

valJ(T,x) = λ, ∀x ∈ R
m.
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2. Characterizations of ergodicity

From now on we add periodicity to the standing assumptions:

f (y,a,b) = f (y+ k,a,b), l(y,a,b) = l(y+ k,a,b), ∀k ∈ Z
m, y ∈ R

m, a ∈ A, b ∈ B. (2.1)

This means that the state space is the m-torus T
m = R

m/Z
m. The first result is a consequence of

Theorem 4 in [3].

Theorem 2 The following statements on the lower game are equivalent.

(i) The lower game is ergodic, i.e., l −valJ(T,x) → const uniformly in x as T → +∞.

(ii) l −valδ
R ∞

0 l(yx(t),a(t),b(t))e−δt dt → const uniformly in x as δ → 0+.

(iii) The additive eigenvalue problem

λ+min
b∈B

max
a∈A

{− f (y,a,b) ·∇χ− l(y,a,b)} = 0 in R
m, χ Z

m-periodic (2.2)

has the property that

sup{λ | there is a viscosity subsolution of (2.2)}

= inf{λ | there is a viscosity supersolution of (2.2)}. (2.3)

If one of the above assertions is true, then the constants in (i) and (ii) are equal and they coincide
with the number defined by (2.3). Moreover, the same result holds for the upper game, after
replacing l −val with u−val in (i) and (ii), and (2.2) with

λ+max
a∈A

min
b∈B

{− f (y,a,b) ·∇χ− l(y,a,b)} = 0 in R
m, χ Z

m-periodic.

PROOF It is well known [18, 10] that w(t,y) := t (l −valJ(t,y)) is the viscosity solution of the
Cauchy problem for the Isaacs equation

wt +H(y,Dyw) = 0 in (0,+∞)×R
m, w(0,y) = 0, w periodic.

The equivalence of (iii) and the uniform convergence of w(t, ·)/t to a constant as t → ∞ is stated
in Theorem 4 of [3], and it gives the equivalence of (i) and (iii).

Next, wδ(x) := l − val
R ∞

0 l(yx(t),a(t),b(t))e−δt dt is the viscosity solution of the Isaacs
equation

δwδ +H(y,Dwδ) = 0 in R
m, wδ periodic,

and Theorem 4 of [3] states the equivalence of (iii) and the uniform convergence of δwδ to a
constant as δ → 0+. Therefore (ii) and (iii) are equivalent.

The equality of the three constants is also given by Theorem 4 of [3]. Finally, the proof for
the upper value is the same, with the Hamiltonian H = minmax replaced by maxmin. 2
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REMARK Note that (ii) deals with a vanishing discount rate problem for infinite horizon games.
The equivalence between (i) and (ii) is a differential game extension of the classical Abelian-
Tauberian theorem, stating that

lim
T→∞

1
T

Z T

0
ϕ(t)dt = lim

δ→0+
δ

Z ∞

0
ϕ(t) e−δt dt

whenever one of the two limits exists. The property (iii) is a characterization of the uniform
ergodicity of the lower game by a Hamilton-Jacobi-Isaacs equation. In some cases the inf and the
sup in the formula (2.3) are attained and the number defined by (2.3) is the unique constant λ such
that the additive eigenvalue problem (2.2) has a continuous viscosity solution, see the remark in
Section 3. In general, however, even if (iii) holds, (2.2) may have no continuous solution χ (see
Arisawa, Lions [8]). By analogy with the theory of homogenization we call (2.2) the cell problem.

Whenever the conditions of Corollary 1 for the ergodicity of the LTAC game are satisfied,
we have the following informations on the value of the game, namely, the constant λ.

Proposition 1 Assume (1.3) and that either the lower or the upper game is ergodic. Then λ =

l −valJ∞(x) = u−valJ∞(x) satisfies

min
x

min
a∈A

max
b∈B

l(x,a,b) ≤ λ ≤ max
x

min
a∈A

max
b∈B

l(x,a,b).

If, moreover,

max
a∈A

min
b∈B

{− f (x,a,b) · p− l(x,a,b)} ≥ max
a∈A

min
b∈B

{−l(x,a,b)} ∀x, p ∈ R
m, (2.4)

(respectively, ≤), then

λ = min
x

min
a∈A

max
b∈B

l(x,a,b), (2.5)

(respectively, λ = maxx mina maxb l(x,a,b)).

PROOF First we use the characterization (i) of ergodicity in Theorem 2, and we set w(t,y) :=
t · l −valJ(t,y). It is well known [18, 10] that w satisfies, in the viscosity sense,

wt +H(y,Dyw) = 0 in (0,+∞)×R
m, w(0,y) = 0, w periodic.

We observe that −t maxy H(y,0) and −t miny H(y,0) are, respectively, a sub- and a supersolution
of this Cauchy problem. Therefore the comparison principle gives

−t max
y

H(y,0) ≤ w(t,y) ≤−t min
y

H(y,0).

We divide by t and let t → +∞. Since w(t,y)/t → λ, and H(y,0) = maxa minb{−l(x,a,b)} by
(1.3), we get the first pair of inequalities.

To prove the second statement we assume by contradiction that λ > −H(y,0) in a neigh-
borhood of a minimum point of −H(y,0) = mina maxb l(x,a,b). Now we use the characterization
(ii) of ergodicity in Theorem 2, as in the proof of Theorem 3. With the same notations, the value
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function wδ of the infinite horizon discounted game satisfies the Isaacs equation (2.12). By the
uniform convergence of δwδ to λ we get

H(y,Dwδ)−H(y,0) = −λ−H(y,0)+o(1) < 0 as δ → 0

in an open set. This is a contradiction with the assumption (2.4). 2

REMARK Note that, for a running cost independent of the controls, l = l(x), the condition (2.4)
reads

min
a

max
b

f (x,a,b) · p = max
b

min
a

f (x,a,b) · p ≤ 0, (2.6)

in view of (1.3). This says that the first player has a stronger control on the vector field than the
second. The conclusion is that the LTAC value is

λ = min
x

l(x),

so the minimizing player can drive asymptotically the system near the minimum points of the
running cost.

Next we describe some sufficient conditions for the ergodicity of the upper or the lower
game. We say that the system (1) is bounded-time controllable by the first player if for some S > 0
and for all x, x̃ ∈ R

m there is a strategy α̃ ∈ Γ such that for all control functions b ∈ B

∃ t# = t#(x, x̃, α̃,b) ≤ S such that yx(t
#)− x̃ ∈ Z

m, (2.7)

where yx(·) is the trajectory corresponding to the strategy α̃ and the control function b, i.e., it
solves

ẏ(t) = f (y(t), α̃[b](t),b(t)), y(0) = x. (2.8)

In other words, the first player can drive the system from any initial position x to any given state
x̃ on the torus T

m in a uniformly bounded time for all possible behaviors of the second player.
Symmetrically, we say that he system (1) is bounded-time controllable by the second player if for
some S > 0 and for all x, x̃ ∈ R

m there is a strategy β̃ ∈ ∆ such that for all control functions a ∈ A

∃ t# = t#(x, x̃,a, β̃) ≤ S such that yx(t
#)− x̃ ∈ Z

m,

where yx(·) is the trajectory corresponding to the strategy β̃ and the control function a, i.e., it
solves

ẏ(t) = f (y(t),a(t), β̃[a](t)), y(0) = x.

For systems with a single player this notion is studied in the literature under various names such
as complete controllability [15], uniform exact controllability [7], and total controllability [9].

Theorem 3 If the system (1) is bounded-time controllable by the first player (respectively, by the
second player), then the lower game (respectively, the upper game) is ergodic.
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PROOF The proof uses the characterization (ii) of ergodicity in Theorem 2, and we call wδ the
lower value function of the discounted infinite horizon problem, namely,

wδ(x) := inf
α∈Γ

sup
b∈B

Z ∞

0
l(yx(t),α[b](t),b(t))e−δt dt.

The main tool of the proof is the following Dynamic Programming Principle due to Soravia, Re-
mark 4.2 of [32],

wδ(x) = inf
α∈Γ

sup
b∈B

inf
0≤t<∞

{
Z t

0
l(y(s),α[b](s),b(s))e−δs ds+ e−δtwδ(y(t))

}
, (2.9)

where y(·) is the trajectory of (2.8) with α̃ replaced by a generic α.
For fixed x,̃x we take a strategy α̃ ∈ Γ such that (2.7) holds. Then (2.9) and the periodicity

of wδ give

wδ(x) ≤ sup
b∈B

{
Z t#

0
l(y(s),α[b](s),b(s))e−δs ds+ e−δt#

wδ(x̃)

}
,

where y(·) is the trajectory of (2.8). Since l and δwδ are uniformly bounded, there is a constant C
such that

δwδ(x)−δwδ(x̃) ≤C(1− e−δS). (2.10)

Now we exchange the roles of x and x̃ to get

lim
δ→0+

|δwδ(x)−δwδ(x̃)| = 0 uniformly in x, x̃ ∈ R
m.

If for fixedx̃ we choose a sequence δk → 0 such that δkwδk
(x̃) → µ, we obtain the uniform conver-

gence of δkwδk
to µ.

We claim that µ is independent of the sequence δk. This implies the uniform convergence
of the whole net δwδ to µ, as desired. To prove the claim we recall the cell problem (2.2), i.e.,

λ+H(y,Dχ) = 0 in R
m, χ periodic, (2.11)

where λ is a constant, and use the inequality

λ1 := sup{λ | ∃ a u.s.c. subsolution of (2.11)} ≤ λ2 := inf{λ | ∃ a l.s.c. supersolution of (2.11)},

which follows from a standard argument based on the comparison principle for sub- and superso-
lutions of Hamilton-Jacobi equations (see, e.g., the proof of Theorem 1 in [7] or that of Theorem
4 in [3]). The Isaacs equation satisfied by wδ in viscosity sense is (see, e.g., [10])

δwδ +H(y,Dwδ) = 0 in R
m, wδ periodic. (2.12)

Then, for λ < µ, wδk
is a subsolution of (2.11) for k large enough, so µ ≤ λ1. The same argument

gives λ2 ≤ µ. Therefore µ = λ1 = λ2, which proves the claim. 2

An immediate consequence of this theorem and of Corollary 1 is the following.

Corollary 2 Assume the Isaacs’ condition (1.3) and that the system (1) is bounded-time control-
lable either by the first or by the second player. Then the LTAC game is ergodic, i.e.,

l −valJ∞(x) = u−valJ∞(x) = lim
T→∞

valJ(T,x) = λ, ∀x ∈ R
m.
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We end this section with some sufficient conditions for ergodicity that are symmetric for
the two players, different from the preceding Theorem 3 and Proposition 1 where one of the two
players have a much stronger hold of the system than the other. We take a system of the form





ẏA(t) = fA(y(t),a(t),b(t)), yA(0) = xA ∈ R
mA ,

ẏB(t) = fB(y(t),a(t),b(t)), yB(0) = xB ∈ R
mB ,

y(t) = (yA(t),yB(t)),

(2.13)

and we assume that the state variables yA are (uniformly) asymptotically controllable by the first
player, whereas the variables yB are asymptotically controllable by the second, in the following
sense. There exists a function η : [0,∞) → [0,∞) with

lim
T→∞

η(T ) = 0, (2.14)

and for all xA, x̃A ∈ R
mA , xB ∈ R

mB , there is a strategy α̃ ∈ Γ such that, for x = (xA,xB),

1
T

Z T

0
min

kA∈Z
mA
|yA

x (t)− x̃A − kA|dt ≤ η(T ), ∀b ∈ B, (2.15)

whereas for all xB, x̃B ∈ R
mB , xA ∈ R

mA , there is a strategy β̃ ∈ ∆ such that

1
T

Z T

0
min

kB∈ZmB
|yB

x (t)− x̃B − kB|dt ≤ η(T ), ∀a ∈ A . (2.16)

Note that the integrand in (2.15) is the distance between yA
x (t) and x̃A on the mA-dimensional torus

T
mA = R

mA/Z
mA , so (2.15) and (2.14) mean that the first player can drive asymptotically yA near

x̃A, uniformly with respect to x, x̃A, and the control of the other player b. Similarly, (2.16) says that
the second player can drive asymptotically yB to x̃B on the mB-dimensional torus T

mB , uniformly
with respect to x, x̃B, and a.

We will also assume that the running cost does not depend on the controls, l = l(yA,yB),
and it has a saddle point in [0,1]mA × [0,1]mB , that is, it satisfies

min
yA∈R

mA
max

yB∈RmB
l(yA,yB) = max

yB∈RmB
min

yA∈R
mA

l(yA,yB) =: l. (2.17)

Proposition 2 Assume the system (1) is of the form (2.13) with yA and yB asymptoticallly control-
lable, respectively, by the first and by the second player. Suppose also that l = l(yA,yB) satisfies
(2.17) and (1.3) holds. Then the LTAC game is ergodic and its value is the value of the static game
with payoff l, that is,

l −valJ∞(xA,xB) = u−valJ∞(xA,xB) = l, ∀(xA,xB) ∈ R
m. (2.18)

REMARK If the system governing yA is bounded-time controllable by the first player and also
stoppable, i.e.,

∀x ∈ R
m, ∀b ∈ B, ∃a ∈ A : fA(x,a,b) = 0,

then the variables yA are asymptotically controllable, because x̃A can be reached from xA in a time
smaller than S and then the first player can keep yA(t) = x̃A for all later times t. In this case, if
l = l(x̃A, x̃B), an optimal strategy for the first player amounts to driving the variables yA to the
saddle point x̃A and stopping there, and the strategy of going to x̃B and staying there forever is
optimal for the second player. This kind of behavior is called a turnpike, see [14, 13].
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3. Examples

Example 1: first order controllability. Assume that for some ν > 0

B(0,ν;m) ⊂ conv{ f (x,a,b) | a ∈ A}, ∀x ∈ R
m,b ∈ B, (3.1)

where B(0,ν : m) denotes the m-dimensional open ball of radius ν centered at the origin and conv
the closed convex hull. From the standard theory of differential games (see, for instance, Corollary
3.7 in [31]) it is known that the system is (small-time) controllable by the first player and the time
necessary to reach a point x̃ from x satisfies an estimate of the form

t#(x, x̃, α̃,b) ≤
C
ν
|x− x̃|.

Therefore the lower game is uniformly ergodic in this case. Moreover, if l = l(x) it is easy to see
that (2.6) holds, so λ = minx l(x).

Example 2: higher order controllability. Consider a system of the form

ẏ(t) =
k−1

∑
i=1

ai(t)g
i(y(t))+ak(t)g

k(y(t),a(t),b(t)), (3.2)

where the control of the first player a = (a1, . . . ,ak) varies in a neighborhood of the origin A ⊂ R
k,

and all gi with i≤ k−1 are C∞ vector field in R
m. Moreover, we suppose the full rank (Hörmander)

condition on g1, . . . ,gk−1, that is,




the vector fields g1, . . . ,gk−1

and their commutators of any order

span R
m at each point of R

m.

By choosing ak ≡ 0 we obtain a symmetric system independent of the second player. Then the
classical Chow’s theorem of geometric control theory says that this system is small-time locally
controllable at all points of the state space. Moreover, for any small t > 0 the reachable set from x
in time t is a neighborhood of x, and the same holds for the reachable set backward in time. From
this, using the compactness of the torus T

m, it is easy to see that the whole state space is an invariant
control set in the terminology of [15]. Then the global bounded-time controllability follows from
Lemma 3.2.21 in [15]. In conclusion, the full system (3.2) is bounded-time controllable by the
first player and therefore the lower game is uniformly ergodic. As in the previous example, if λ is
independent of the controls (2.6) holds and λ = minx l(x).

REMARK If (2.7) holds with t#(x, x̃, α̃,b) ≤ ω(|x− x̃|) for all |x − x̃| ≤ γ and all b ∈ B , for
some modulus ω and γ > 0, we say that (1) is also small-time controllable by the first player.
For such systems there exists a continuous solution χ to the additive eigenvalue problem (2.2), by
Proposition 9.2 in [4]. The systems of the Examples 1 and 2 are indeed small-time controllable by
the first player.

Example 3: separate controllability. For a system of the form (2.13) we can assume that the
subsystem for the variables yA either satisfies

B(0,ν;mA) ⊂ conv f (x,A,b) ∀x ∈ R
m,b ∈ B,
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or it is of the form

ẏA =
kA−1

∑
i=1

aig
i
A(yA)+akAgkA

A (y,a,b),

where the control of the first player a =(a1, . . . ,akA) varies in a neighborhood of the origin A⊂R
kA ,

and the vector fields g1
A, . . . ,gkA−1

A are of class C∞ and satisfy the full rank condition in R
mA . Then

the variables yA are asymptotically controllable because the first player can drive them from xA to
x̃A in bounded time and then stop there by choosing the null control. Similarly, the variables yA

are asymptotically controllable if either fB verifies

B(0,ν;mA) ⊂ conv f (x,a,B) ∀x ∈ R
m,a ∈ A,

or it is of the form

ẏB =
kB−1

∑
i=1

big
i
B(yB)+bkBgkB

B (y,a,b),

where the control of the second player b = (b1, . . . ,bkB) varies in a neighborhood of the origin
B ⊂ R

kB , and the vector fields g1
B, . . . ,gkB−1

B are of class C∞ and satisfy the full rank condition
in R

mB . Under these condition and with l = l(yA,yB) satisfying (2.17) Proposition 2 implies the
ergodicity of the LTAC game and the formula (2.18).

4. Ergodicity of noisy systems

In this section we study the ergodicity of the lower value for the following class of stochastic
differential games. We consider the controlled diffusion process

dy(t) = f (y(t),a(t),b(t))dt +σ(y(t),a(t),b(t))dW(t), y(0) = x, (4.1)

where W is an r-dimensonal Brownian motion, and σ is a continuous map from R
m ×A×B to the

space of m× r matrices, lipschitzean in x uniformly in a,b. The finite horizon cost functional is

J(T,x) = J(T,x,a(·),b(·)) := E

[
1
T

Z T

0
l(yx(t),a(t),b(t))dt

]
,

where E denotes the expectation. The set of admissible controls for the second player, that we still
denote with B , contains the progressively measurable functions of time taking values in B, and A
will denote the admissible controls of the first player. We also keep the notation Γ and ∆ for the
set of nonanticipating admissible strategies for the first player and the second player, respectively,
and we refer to [20] for the precise definitions in the stochastic setting. The lower value of the
finite horizon game is

v(T,x) := l −valJ(T,x) := inf
α∈Γ

sup
b∈B

J(T,x,α[b],b)

and we say that the lower game is ergodic if

l −valJ(T, ·) → λ as T → ∞ uniformly in R
m.

Besides the periodicity in the state variable of f and l (2.1) we assume

σ(y,a,b) = σ(y+ k,a,b), ∀k ∈ Z
m, y ∈ R

m, a ∈ A, b ∈ B.
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We are going to extend all the results of Section 2 to this setting, and we also present a theorem
where the ergodicity is due to the effects of the diffusion without any controllability hypothesis.
Analogous results hold for the upper game, which is defined in the obvious way, but we will not
state them explicitly.

We begin with the stochastic counterpart of the Abelian-Tauberian-type Theorem 2, that is
again a consequence of Theorem 4 in [3]. We will use the second order Hamiltonian

H(y, p,X) := min
b∈B

max
a∈A

{
−

1
2

trace
(
σσT (y,a,b)X

)
− f (y,a,b) · p− l(y,a,b)

}

for y, p ∈ R
m and X any symmetric m×m matrix.

Theorem 4 The following statements are equivalent.

(i) The lower game is ergodic, i.e., v(T,x) → const uniformly in x as T → +∞.

(ii) l −valE[δ
R ∞

0 l(yx(t),a(t),b(t))e−δt dt] → const uniformly in x as δ → 0+.

(iii) The cell problem

λ+H(y,∇χ,D2χ) = 0 in R
m, χ Z

m-periodic (4.2)

has the property that

sup{λ | there is a viscosity subsolution of (4.2)}

= inf{λ | there is a viscosity supersolution of (4.2)}. (4.3)

If one of the above assertions is true, then the constants in (i) and (ii) are equal and they coincide
with the number defined by (4.3).

PROOF The proof is the same as that of Theorem 2 after recalling that w(t,y) := tv(t,y) is the
viscosity solution of

wt +H(y,Dyw,D2
yyw) = 0 in (0,+∞)×R

m, w(0,y) = 0, (4.4)

and wδ(x) := l −valE
[
R ∞

0 l(yx(t),a(t),b(t))e−δt dt
]

is the viscosity solution of

δwδ +H(y,Dwδ,D
2wδ) = 0 in R

m, (4.5)

see [20]. 2

Proposition 3 Assume the lower game is ergodic. Then λ = limT→∞ v(T,x) satisfies

min
x

max
b∈B

min
a∈A

l(x,a,b) ≤ λ ≤ max
x

max
b∈B

min
a∈A

l(x,a,b).

If, moreover,

min
b∈B

max
a∈A

{
−

1
2

trace
(
σσT (y,a,b)X

)
− f (x,a,b) · p− l(x,a,b)

}
≥min

b∈B
max
a∈A

{−l(x,a,b)} ∀x, p,X ,

(respectively, ≤), then
λ = min

x
max
b∈B

min
a∈A

l(x,a,b), (4.6)

(respectively, λ = maxx maxb mina l(x,a,b)).
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PROOF The proof is the same as that of Proposition 1, after observing that

−H(y,0,0) = max
b∈B

min
a∈A

l(x,a,b).

2

It is well known that nondegenerate diffusion processes are ergodic (in the standard sense).
The next result states the ergodicity of games involving a controlled system affected by a nonde-
generate diffusion, with no controllability assumptions. It is a consequence of Theorem 7.1 in our
paper [4], see also [3]. Earlier related results are due to Evans [16] and Arisawa and Lions [8].

Theorem 5 Assume that, for some ν > 0, the minimal eigenvalue of the matrix σσT (y,a,b) is
larger than ν, for all y ∈ R

m, a ∈ A, b ∈ B. Then the lower game is ergodic.

PROOF By means of regularity estimates for viscosity solutions of fully nonlinear uniformly
elliptic PDEs, Theorem 7.1 in [4] shows that there exists a (unique) constant λ such that the cell
problem (4.2) has a continuous viscosity solution χ. Then u(t,y) := λt +χ(y) solves

ut +H(y,Dyu,D2
yyu) = 0 in (0,+∞)×R

m, u(0,y) = χ(y).

Since w(t,y) := tv(t,y) solves (4.4), by the comparison principle for viscosity solutions of Cauchy
problems we get

u(t,y)−maxχ ≤ tv(t,y) ≤ u(t,y)+minχ ∀t,y.

Therefore v(t, ·) → λ uniformly as t → ∞. 2

The next result is an extension to stochastic games of Theorem 3. We say that the system
(4.1) is bounded-time controllable by the first player if for some S > 0 and for all x, x̃ ∈ R

m there
is a strategy α̃ ∈ Γ such that for all admissible control functions b ∈ B

∃ t# = t#(x, x̃, α̃,b) ≤ S such that yx(t
#)− x̃ ∈ Z

m almost surely, (4.7)

where yx(·) is the solution of (4.1) corresponding to the controls α̃[b] and b.

Theorem 6 If the system (4.1) is bounded-time controllable by the first player, then the lower
game is ergodic.

PROOF We follow the argument of the proof of Theorem 3. We use the characterization (ii) of
ergodicity in Theorem 4, and we call wδ the lower value function of the discounted infinite horizon
problem, namely,

wδ(x) := inf
α∈Γ

sup
b∈B

E

[
Z ∞

0
l(yx(t),α[b](t),b(t))e−δt dt

]
.

The main tool of the proof is the following Dynamic Programming Principle for stochastic games
due to Swiech, Corollary 2.6 (iii) of [36],

wδ(x) = inf
α∈Γ

sup
b∈B

inf
0≤t<∞

E

{
Z t

0
l(yx(s),α[b](s),b(s))e−δs ds+ e−δtwδ(yx(t))

}
. (4.8)
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For fixed x,̃x we take a strategy α̃ ∈ Γ such that (4.7) holds. Then (4.8) and the periodicity of wδ
give

wδ(x) ≤ sup
b∈B

E

{
Z t#

0
l(yx(s), α̃[b](s),b(s))e−δs ds+ e−δt#

wδ(x̃)

}
,

where yx(·) is the trajectory of (4.1) with the controls α̃[b] and b. Now the proof of Theorem 3
shows that, along a sequence δk → 0, δkwδk

→ µ uniformly.
Finally, the proof that µ dos not depend on the sequence δk is also the same as in Theorem

3, with the new cell problem (4.2) and using the equation (4.5) satisfied by wδ. 2

The last result of the section is a stochastic counterpart of Proposition 2. We take a con-
trolled diffusion of the form





dyA(t) = fA(y(t),a(t),b(t))dt +σA(y(t),a(t),b(t))dWA(t), yA(0) = xA ∈ R
mA ,

dyB(t) = fB(y(t),a(t),b(t))dt +σB(y(t),a(t),b(t))dWB(t), yB(0) = xB ∈ R
mB ,

y(t) = (yA(t),yB(t)),

(4.9)

and we assume that the state variables yA are asymptoticallly controllable by the first player, and
the variables yB are asymptoticallly controllable by the second, in the following sense. There exists
a function η : [0,∞) → [0,∞) with limT→∞ η(T ) = 0, and for all xA, x̃A ∈ R

mA , xB ∈ R
mB , there is a

strategy α̃ ∈ Γ, such that, for x = (xA,xB),

E

[
1
T

Z T

0
min

kA∈Z
mA
|yA

x (t)− x̃A − kA|dt

]
≤ η(T ), ∀b ∈ B, (4.10)

whereas for all xB, x̃B ∈ R
mB , xA ∈ R

mA , there is a strategy β̃ ∈ ∆ such that

E

[
1
T

Z T

0
min

kB∈ZmB
|yB

x (t)− x̃B − kB|dt

]
≤ η(T ), ∀a ∈ A .

As in Section 2 we assume that the running cost does not depend on the controls and has a
saddle point. The Isaacs condition now is

min
b∈B

max
a∈A

{
−

1
2

trace
(
σσT (y,a,b)X

)
− f (y,a,b) · p− l(y,a,b)

}
=

max
a∈A

min
b∈B

{
−

1
2

trace
(
σσT (y,a,b)X

)
− f (y,a,b) · p− l(y,a,b)

}
. (4.11)

Proposition 4 Assume the system (4.1) is of the form (4.9) with yA and yB asymptoticallly control-
lable, respectively, by the first and by the second player. Suppose also l = l(yA,yB) satisfies (2.17)
and (4.11) holds. Then the lower game is ergodic and its value converges to the value of the static
game with payoff l, that is,

lim
T→∞

v(T,xA,xB) = l, uniformly in (xA,xB) ∈ R
m. (4.12)

REMARK If the system governing yA is bounded-time controllable by the first player and also
stoppable, i.e.,

∀x ∈ R
m, ∀b ∈ B, ∃a ∈ A : fA(x,a,b) = 0, σA(x,a,b) = 0,
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then the variables yA are asymptotically controllable, because x̃A can be reached from xA in a
time smaller than S and then the first player can keep yA(t) = x̃A for all later times t. As in the
deterministic case, an optimal strategy for each player is a turnpike: driving the system to a saddle
point and stopping there.

REMARK The proof of Proposition 4 shows also that the upper game is ergodic and the upper
value u−valJ(T,x) converge uniformly to the saddle l as T → ∞.
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