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1. D-brane models

It is still a great challenge for string theory to answer the basic question whether it has anything
to do with nature. In the framework of string theory this question boils down to whether string
theory incorporates the Standard Model (SM) of particle physics at low energies or whether string
theory has a vacuum/vacua resembling our world to the degree of accuracy with which it has been
measured. This latter formulation implies that neither do we know that string theory contains at
least one such vacuum nor do we know, if there exists a solution, whether it is unique.

Clearly, in order to make progress we have to know what Standard Model like vacua string
theory admits. For an admissible string vacuum we at least have to ensure that the following “first
order requirements” are satisfied.

• Gauge symmetry SU(3)c ×SU(2)w ×U(1)Y

• Three generations of chiral SM fermions, including right handed neutrinos

• Mechanism to break SU(2)w ×U(1)Y →U(1)em, Higgs particles
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• Mechanism to stabilize the weak scale: supersymmetry

We will see that these properties can be fairly easily controlled in string theory and are essen-
tially given by topological features of the string background. However, having a candidate vacuum
satisfying all these constraints there are additional “second order requirements”.

• Yukawa couplings → fermion masses, CP violation

• Details of supersymmetry breaking, concrete form of soft terms, suppression of FCNCs

• Gauge couplings resp. gauge coupling unification

• Cosmological issues: smallness of the cosmological constant, inflationary scenario, etc.

In this lecture we will get to know a concrete class of string models which does provide mech-
anisms to satisfy at least the first order requirements. These models use intersecting/magnetized
D-branes as their essential ingredient. For recent reviews on this subject please consult [1, 2, 3,
4, 5, 6, 7, 8]. [Since these are lecture notes, I will not try to provide a complete list of references.
Instead I will mainly refer to those papers, whose content is directly covered in these lecture notes.
Any overlap with our recent review articles could hardly be avoided and is intended. Therefore,
I apologize to those readers who meanwhile feel bored by seeing the same topic presented by the
same people ad nauseam.]

1.1 Gauge fields on D-branes

First one needs a mechanism to get gauge symmetries in string theory. One natural source
are the lightest open string excitations, where in general the ends of the open strings can end on
D-branes. More concretely, a p-brane is an extended object with p space-like directions and one
time-like direction and it couples to a (p+1) form potential Cp+1 as follows:

Sp = Qp

Z

Dp

Cp+1, (1.1)

where the integral is over the (p+1) dimensional world-volume of the D-brane and Qp denotes its
R-R charge. For BPS D-branes in Type IIA string theory p is an even number and in Type IIB an
odd one. Polchinski was the first to realize that the fluctuations of such D-branes can by themselves
be described by a string theory [9](see [10, 11] for reviews), which in this case are open strings
attached to the D-brane, i.e., with Dirichlet boundary conditions transversal to the D-brane and
Neumann boundary conditions along the D-brane

µ = 0, . . . , p ∂σXµ|σ=0,π = 0,

µ = p+1, . . . ,9 ∂τXµ|σ=0,π = 0. (1.2)

where (σ,τ) denote the world-sheet space and time coordinates and X µ the space-time coordinates.
Their world-sheet superpartners are denoted as ψµ in the following. Upon quantization of an open
string, the massless excitations ψµ

− 1
2
|0〉 give rise to a U(1) gauge field, which can only have mo-

mentum along the D-brane and is therefore confined to it. It is precisely the occurrence of these
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Figure 1: D-branes

gauge fields which makes D-branes interesting objects for string model building. It is quite remark-
able that closed and open strings give rise to gravity and gauge theory, precisely the kind of forces
we see in our universe.

Placing N D-branes on top of each other the gauge fields on the branes transform in the adjoint
representation of the gauge group U(N). Can one also get SO(N), SP(2N), E6, E7, E8, G2 or
F4 gauge symmetries? At least SO(N) and SP(2N) gauge groups can be obtained from so called
orientifolds (like Type I string theory). Please see [12] for a review.

1.2 Orientifolds

An orientifold is the quotient of Type II string theory by a discrete symmetry group G including
the world-sheet parity transformation Ω : (σ,τ) → (−σ,τ). As a consequence the resulting string
models contain non-oriented strings and their perturbative expansion also involves non-oriented
surfaces like the Klein-bottle. Dividing out by such a symmetry, new objects called orientifold
planes arise, whose presence can be detected for instance by computing the Klein-bottle amplitude

K =
Z ∞

0

dt
t

Tr
(

Ω
2 e−2πt(L0+L0)

)
. (1.3)

Depending on which coordinate one defines as time, this amplitude can be viewed either as a closed
string one loop amplitude or as a closed string propagating between two crosscaps (RP2) (see figure
2). In the limit l → ∞ one obtains infrared divergences, which result from non-vanishing one-point
functions of massless fields on the crosscap. In other words, the crosscaps/orientifold planes do
couple to some of closed string massless modes, i.e. they carry in particular charge under a higher
rank R-R p-form Ap. In addition the coupling to gravity signals that the orientifold planes also
carry tension. Such tadpoles for (higher rank) gauge fields Ap are dangerous and indicate that one
has not satisfied Gauß law. Recall that the equations of motion for a rank p gauge fields read

d ?Fp+1 = ? jp. (1.4)
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2πt

l

1
p2lt=1/(4l)

Figure 2: Klein bottle diagram

2π

2π
π

2πt

l

1
p2lt=1/(2l)

Figure 3: Annulus diagram

2π

2π
π

2πt

l

1
p2lt=1/(8l)

Figure 4: Möbius strip diagram

Integrating this equation over a compact space Σ10−p transversal to the Op brane yields Gauß law

0 =
Z

Σ10−p

d ?Fp+1 =
Z

Σ10−p

? jp = Qp. (1.5)

Therefore, the overall charge sitting on a compact space has to vanish.
In order to cancel the charge of the orientifold planes, other objects also carrying charge under

the same p-forms have to be introduced. As we have seen already, these are precisely the Dp−1
branes, whose tadpole can be detected by computing the annulus amplitude as shown in Figure 3.
In tree channel the annulus can be considered as a closed string propagating between two D-branes.
The resulting infrared divergences arise again from non-vanishing massless tadpoles on the disc.
To complete the story one also has to compute the non-oriented open string one-loop diagram,
which is nothing else than the Möbius strip. In tree channel this can be seen as the a closed string
propagating between a D-brane and an orientifold plane. To conclude for these orientifold models
the introduction of D-branes is necessary in order to cancel all tadpoles and therefore they are the
natural arena for consistent string model building with D-branes. In a consistent string background
the global R-R tadpoles have to vanish.

Now, let us assume that M admits a complex structure so that we locally can introduce com-
plex coordinates zi. One can define the following orientifold models

• Type IIB: Ωσ, where σ : M → M denotes a holomorphic involution, which is a symmetry
of M .
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Figure 5: Intersecting D6-branes

• Type IIA: Ωσ, where σ : M → M denotes an anti-holomorphic involution, which is a sym-
metry of M .

1.3 Chirality

One of the main features of the Standard Model is that the light fermionic matter fields appear
in chiral representations of the SU(3)C × SU(2)W ×U(1)Y gauge symmetry such that all gauge
anomalies are canceled. Considering just parallel D-branes in flat space one does not get chiral
matter on the branes so that one has to invoke an additional mechanism to realize this phenomeno-
logically very important feature. One way to do so is by allowing the branes to non-trivially inter-
sect [13].

To be more precise consider two D6-branes sharing the four dimensional Minkowskian space-
time. This means that in the six dimensional transversal space the branes are three-dimensional
and wrap a three dimensional cycle. In general position two such branes do intersect in a point
in the internal space. Consider the simple case of a flat six-dimensional internal space. Choosing
light cone gauge, let us introduce complex coordinates zi = xi + iyi with i = 0, . . . ,3. Then two
D6-branes cover the z0 plane and intersect in the other directions as shown in Figure 5.

Placing for convenience one D-brane along the xi axes, an open string stretched between two
intersecting D-branes has the following boundary conditions

σ = 0 : ∂σX i = ∂τY
i = 0

σ = π : ∂σX i + tan(∆Φi)∂σY i = 0 (1.6)
− tan(∆Φi)∂τX i +∂τY

i = 0,

which in complex coordinates read

σ = 0 : ∂σ(Zi +Z
i
) = ∂τ(Z

i −Z
i
) = 0

σ = π : ∂σZi + e2i∆Φi∂σZ
i
= 0 (1.7)

∂τZi − e2i∆Φi∂τZ
i
= 0.

Now, implementing these boundary conditions in the mode expansion of the fields Z i and Z
i, one

finds [13]

Zi(σ,τ) = ∑
n∈Z

1
(n+ εi)

αi
n+εi

e−i(n+εi)(τ+σ) + ∑
n∈Z

1
(n− εi)

α̃i
n−εi

e−i(n−εi)(τ−σ) (1.8)
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with εi = ∆Φi/π for i ∈ {1,2,3}. Therefore the bosonic oscillator modes of the fields Z1, . . . ,Z3

are given by
αi

n+εi
, α̃i

n−εi
. (1.9)

Similarly, for the world-sheet fermions the modes are ψi
n+εi

and ψ̃i
n−εi

in the R-R sector and with an
additional 1/2-shift in the Neveu-Schwarz Neveu-Schwarz (NS-NS) sector. Therefore, in analogy
to the closed string sector, an open string between two intersecting D-branes can be considered as
a twisted open string. Since compared to the closed string sector the degrees of freedom in the
open string sector are halfed, for generic intersections one gets one chiral Weyl fermion from the
four-dimensional space-time point of view.

Summarizing, we have found that two generically intersecting D6-branes give rise to one
chiral fermion at the intersection point. If we now consider the intersection between a stack of
M D6-branes with another stack of N D6-branes it is clear that the, say,left-handed chiral fermion
transforms in the bi-fundamental representation of the U(M)×U(N) gauge symmetry.

On a compact space two D-branes have in general a multiple intersection number so that on
gets

Iab chiral fermions at (a,b) intersection

where Iab denotes the topological intersection number between the two branes a and b.

1.4 T-duality

Performing a T-duality in the yI directions one exchanges Neumann and Dirichlet boundary
condition

σ = 0 : ∂σX i = ∂σY i = 0
σ = π : ∂σX i + tan(∆Φi)∂τY

i = 0 (1.10)
− tan(∆Φi)∂τX i +∂σY i = 0

with tan(∆Φi) = mI

nI
1

RI
1 RI

2
. Therefore one gets a space-time filling D-brane with mixed boundary

conditions, i.e. there exist a constant magnetic gauge flux F I = tan(∆Φi) = mI

nI
1

RI
1 RI

2
on the brane

world-volume. Here nI denotes the wrapping number of the brane around T 2 and mI the first Chern
class of the gauge bundle

c1(F) = nI
Z

T 2
F I = mI . (1.11)

Therefore, for string model building the following two set-ups are equivalent:

Orientifolds of Type IIA with intersecting D6-branes
⇐⇒

Orientifolds of Type IIB with magnetised D9-branes.

1.5 Intersecting D-brane models

The following presentation is in the spirit of mainly [14]. Consider Type IIA string theory on
IR1,3 ×CY3 and perform an orientifold Ωσ(−1)FL such that

σ(J) = −J
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σ(Ω3) = e2iϕΩ3. (1.12)

The resulting O6 plane preserves N = 1 supersymmetry, as the fixed point locus of an anti-
holomorphic involution defines a so-called special Lagrangian 3-cycle (sLag).

A three-cycle πa is called Lagrangian if the restriction of the Kähler form on the cycle vanishes

J|πa = 0. (1.13)

If the three-cycle in addition is volume minimizing, which can be expressed as the property that
the imaginary part of the three-form Ω3 vanishes when restricted to the cycle,

ℑ(eiϕa Ω3)|πa = 0, (1.14)

then the three-cycle is called special Lagrangian. The parameter ϕa determines which N = 1
supersymmetry is preserved by the brane. Thus, different branes with different values for ϕa pre-
serve different N = 1 supersymmetries. One can show that (1.14) implies that the volume of the
three-cycle is given by

Vol(πa) =

∣∣∣∣
Z

πa

ℜ(eiϕa Ω3)

∣∣∣∣ . (1.15)

The O6 plane carries NS-NS and R-R tadpoles, which have to be canceled by introducing
stacks of D6-banes wrapping 3-cycles πa ∈ H3(M ) and their orientifold images π′

a. The resulting
equation of motion for the R-R field strength G8 = dC7 is

1
κ2 d ?G8 = µ6 ∑

a
Na δ(πa)+µ6 ∑

a
Na δ(π′

a)−4µ6 δ(πO6), (1.16)

where δ(πa) denotes the Poincaré dual three-form of πa. Since the left hand side in eq. (1.16) is
exact, the R-R tadpole cancellation condition boils down to just a simple condition on the homology
classes

∑
a

Na (πa +π′
a)−4πO6 = 0. (1.17)

The above condition implies that the overall three-cycle all the D-branes and orientifold planes
wrap is trivial in homology. These conditions are augmented by additional K-theory constraints,
whose field theory manifestation is the vanishing of the global SU(2) Witten anomaly [15].

In order to preserve a global N = 1 supersymmetry all D6-branes have wrap special La-
grangian 3-cycles with ϕa = ϕO6. In this case also all NS-NS tadpole vanish.

If the image cycle π′
a is point-wise identical to πa, then one gets SO/SP gauge symmetries,

whereas in the general case π′
a 6= πa one finds a U(Na) gauge symmetry. For a gauge group G =

∏K
a=1U(Na) the chiral massless spectrum is given in Table 1.

Open strings stretched between a D-brane and its σ image are the only ones left invariant under
the combined operation Ωσ(−1)FL . Therefore, they transform in the antisymmetric or symmetric
representation of the gauge group, indicating that the price we have to pay by considering inter-
secting D-branes in an orientifold background is that more general representations are possible for
the chiral fermions.
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Table 1: Chiral spectrum for intersecting D6-branes

Representation Multiplicity
a

1
2 (π′

a ◦πa +πO6 ◦πa)

a
1
2 (π′

a ◦πa −πO6 ◦πa)

( a, b) πa ◦πb

( a, b) π′
a ◦πb

Let us check that the R-R tadpole cancellation condition (1.17) together with Table 1 guaran-
tees the absence of non-Abelian gauge anomalies.

A = − ∑
b6=a

Nb(πa ◦πb)+ ∑
b6=a

Nb(π′
a ◦πb)+ Na−4

2 (π′
a ◦πa +πO6 ◦πa)+

Na+4
2 (π′

a ◦πa −πO6 ◦πa)

= −πa ◦ (∑
b

Nb(πb +π′
b)−4πO6) = 0. (1.18)

Naively, there exist Abelian and mixed Abelian, non-Abelian anomalies, as well as gravitational
anomalies. However, these are canceled by a generalized Green-Schwarz mechanism.

To the end of this lecture let me list some general comments on model building using inter-
secting/magnetized D-branes (for references please see [8]:

• Many concrete models have been discussed in the literature, where in most cases M was
chosen to be a toroidal orbifold space T 6/ZN .

• On more general Calabi-Yau’s not very much is known about special Lagrangian 3-cycles,
but instead sometimes one can use pure conformal field theory techniques to construct such
models → orientifolds of Gepner models.

• So far there are some semi-realistic MSSM like models, but no completely satisfactory model
has emerged yet which also fulfils the second order requirements. Moreover, in most cases
one gets exotic gauge factors and extra matter.

• Methods have been developed to compute the low-energy effective action for supersymmetric
models, which is determined by the Kähler potential, the holomorphic gauge kinetic function
and the superpotential.

2. Flux compactifications

Besides these model building techniques involving intersecting/magnetized D-branes a second
very interesting development has occurred. Namely, it was realized that so-called flux compacti-
fications have a very rich structure and in particular allow one to freeze some of the extra moduli
(massless fields), which notoriously appear in string compactifications. This has developed into a
very broad subject, so that here we will explain the main aspects using the example of three-form
fluxes in Type IIB string theory as discussed in [16, 17].
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But first let us recall that superstring theory contains many p-form gauge fields Cp in its mass-
less spectrum. In particular, Type IIB contains NS-NS 0,2-forms and R-R 2,4-forms and their
magnetic dual 8− p-forms. Now, one considers solutions to the ten-dimensional string equations
of motion with non-trivial fluxes Fp+1 = dCp 6= 0. The qualitative consequences of these fluxes are:

• The flux can generate new tadpoles for some the other p-form fields via Chern-Simons terms
in the 10D action.

• The kinetic term

Skin =
Z

M
F ∧?F (2.1)

induces a scalar potential in the four dimensional effective action, which in general depends
on the moduli controlling the size of the cycles Γp+1 the flux is running through, i.e.

Z

Γp+1
Fp+1 6= 0. (2.2)

This can lead to moduli stabilisation.

• Fp+1 provides an extra source term in the Einstein equation

Rµν −
1
2 gµνR = 8πGTµν(Fp+1) (2.3)

implying that the metric is not any longer Ricci-flat.

2.1 New tadpoles

The ten-dimensional Type IIB low-energy effective action reads

SIIB =
1

κ2
10

Z

d10x
√−g

(
R− ∂µτ∂µτ

2(Imτ)2 −
G3 ·G3

2 ·3!Imτ
− F̃2

5
4 ·5!Imτ

)

+
1

κ2
10

Z

C4 ∧G3 ∧G3
4i Imτ

+ local sources (2.4)

with the dilaton-axion field τ = C0 + ie−ϕ, the complex three-form flux G3 = F3 − τH3 and the
self-dual 5-form field F̃5 = F5 − 1

2C2 ∧H3 + 1
2 F3 ∧B2. The Bianchi identity for this fields reads

dF̃5 = d ? F̃5 = H3 ∧F3 +2κ2µ3 ρlocal, (2.5)

which means that the G3-flux contributes to the D3-brane tadpole cancellation condition by an
amount

N f lux =
1

(4π2α′)2

Z

M
H3 ∧F3 . (2.6)
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2.2 The scalar potential

The tree level scalar potential in four dimensions is given by (suppressing the warp factor)

V =
1

4κ2
10Imτ

Z

M
d6yG3 ∧?6G3 . (2.7)

One can split the 3-form flux into an imaginary self-dual piece G+ and an imaginary anti-self-dual
piece G−, i.e.

?6G±
3 = ±iG±

3 . (2.8)

Using ?2
6 = −1 after some little algebra one writes the scalar potential as

V =
1

2κ2
10Imτ

Z

M
d6yG∓

3 ∧?6G
∓
3 ∓ i

4κ2
10Imτ

Z

M
d6yG3 ∧G3 (2.9)

where the second term Tf lux (including the sign) is proportional to N f lux. Now, one can distinguish
the two cases

• G−
3 = 0, G3 ISD → N f lux ≥ 0 and Tf lux ≥ 0, i.e. the flux contributes like a D3-brane to the

NS-NS and R-R tadpole

• G+
3 = 0, G3 IASD → N f lux ≤ 0 and Tf lux ≥ 0, i.e. the flux contributes like a D3-brane to the

NS-NS and R-R tadpole → supersymmetry breaking.

Consider now ISD fluxes. The first term in (2.9) is positive definite and can be written as an F-term

VF = eK

(

∑
i j

Gi jDiW D jW −3|W |2
)

(2.10)

of a superpotential W [18]. Here the sum runs over all moduli, i.e. the complex structure, the
dilaton and the axion-volume modulus ρ = b + iVolM whose Kähler potentials are given at tree
level by

K = − log
[
−i

Z

M
Ω∧Ω

]
− log [−i(τ− τ)]−3log [−i(ρ−ρ)] . (2.11)

Moreover, Gi j is the inverse of the metric Gi j = ∂i ∂ jK and the covariant derivative is defined as
Di = ∂i +∂iK. In our case the superpotential is of Gukov-Vafa-Witten type [19]

W =
Z

M
Ω3 ∧G3 , (2.12)

which apparently depends only on the complex structure moduli and the dilaton. Since W does not
depend on the Kähler modulus ρ, the ρ term in the sum in (2.10) cancels against the −3|W |2 term,
so that the scalar potential is of the so-called no-scale type

VF = eK

(

∑
IJ

GIJDIW DJW

)
≥ 0 (2.13)

where the sum only runs over the dilaton and the complex structure moduli. To summarize, the
minima of the scalar potential can be characterized as follows:
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• VF = 0 → G ISD, G = G(2,1) + G(0,3) → DIW = 0 for all I, freezes in general all complex
structure and moduli and the dilaton.

• Supersymmetry → DρW 'W = 0 → G = G(2,1).

Let us end this lecture with some comments:

• In our considerations we neglected the backreaction of the flux on the geometry, i.e. the new
source term in the Einstein equation. In a model with only D3 branes and G-fluxes this is
just a warped Calabi-Yau geometry

ds2
10 = e2A(y)g(4)

µν dxµ dxν + e−2A(y)g̃(6)
mndym dyn (2.14)

with

F̃5 = (1+?)[dα(y)∧dVol4] (2.15)

and α = exp(4A). For models with D7 branes the geometry is not any longer of this simple
warped form, but involves a strong backreaction, which is best described via F-theory on
Calabi-Yau fourfolds.

• For supersymmetry also O3-planes are needed → orientifolds of Type IIB on Calabi-Yau
manifolds

• For H1(M ) 6= 0 one gets the additional supersymmetry condition that the flux has to be
primitive, i.e. J∧G = 0.

3. The KKLT scenario

We have seen that G-flux allows one to freeze all complex structure moduli and the dilaton.
However, at this level the Kähler moduli remain as massless fields. Two mechanisms have been
proposed to fix also these fields:

• There are α′ corrections to the Kähler potential, which imply α′ corrections to the scalar
potential VF .

• There can be non-perturbative string corrections to the superpotential generated by for in-
stance stringy instantons.

The second scenario has been discussed by KKLT and their approach is going to be presented in
this lecture [20].

The starting point is again the Type IIB string with G-flux and superpotential

W =
Z

Ω3 ∧G3. (3.1)

Recall that the Kähler potentials are given at tree level by

K = − log
[
−i

Z

M
Ω∧Ω

]
− log [−i(τ− τ)]−3log [−i(ρ−ρ)] . (3.2)

In order to fix also the Kähler moduli, KKLT proposed a two step process.
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• One turns on an ISD but non-supersymmetric G-flux G = G(2,1) +G(0,3), so that VF = 0 but
W = W0. We assume that all complex structure moduli are frozen and that the dilaton is
frozen in the perturbative regime gs << 1.

• After integrating out the heavy complex structure fields one gets an effective theory just for
Kähler moduli, where now non-perturbative corrections to the superpotential, as induced by
for instance Euclidean D3-branes, are taken into account. (According to Witten, such cor-
rections arise in the F-theory picture whenever the fourfold admits divisors of arithmetic
genus one, i.e. ∑3

i=0(−1)iH(0,i)(D) = 1, which project to 4-cycles in the base of the elliptic
fibration.) Similar corrections can be induced by gaugino condensation on D7-branes. Phe-
nomenologically, one includes such corrections by the leading order instanton correction of
the generic form

Winst ' eiaρ. (3.3)

3.1 AdS minima

For the second step one simply makes the following phenomenological ansatz

W = W0 +Aeiaρ (3.4)

where for simplicity we assume ρ = iσ and A,a,W0 ∈ IR. In the following we also assume that one
finds non-supersymmetric minima of VF with W0 < 0.

Using (3.4) one looks for supersymmetric minima in σ, i.e. solutions to the equation DσW = 0.
This yields the condition

W0 = −Ae−aσcr

(
1+

2
3aσcr

)
. (3.5)

The value of the scalar potential at this new supersymmetric minimum σcr is given by

V0 =
−a2 A2 e−2aσcr

6σcr
< 0. (3.6)

Self-consistency of the solution requires σcr >> 1 (no α′ corrections) and aσcr >> 1 (leading
order instanton approximation justified). In Figure 6 the resulting scalar potential is shown, which
apparently has a stable self-consistent AdS minimum.

3.2 dS minima

Concerning moduli stabilisation we have already reached the goal, however KKLT realized
that with additional stringy input this scenario can also lead to (non-supersymmetric) de-Sitter
solutions. The new ingredient is given by the introduction of D3 branes respectively D7-branes
with magnetic flux.

• D3 branes in an ISD G-flux background are stuck at the point of maximal warping. Put
differently, ISD G-flux induces susy soft masses for the brane moduli of D3 branes.
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Figure 6: The scalar potential (1015 ·V (σ)) for the choice A = 1, a = 0.1, W0 = −10−4

• We have to satisfy the R-R tadpole cancellation condition N f lux + QD3 = QO3, which gives
the NS-NS tadpole (tension)

VD = N f lux +TD3 −TO3 = 2TD3. (3.7)

Taking also the warping of the geometry into account this tension can be determined to be

VD =
8D
σ2 , (3.8)

so that the total scalar potential now reads

Vtot = VF +VD =
aAe−aσ

2σ2

(
1
3 σaAe−aσ +W0 +Ae−aσ

)
+

D
σ2 . (3.9)

By tuning of D the local minimum of Vtot is shifted to positive values and one finally gets meta-
stable de-Sitter vacua. In Figure 7 the resulting scalar potential is shown, which apparently leads
to a meta-stable dS vacuum with small cosmological constant. Again to the end of this lecture a
few comments:

• As it is discussed so far, the KKLT set-up is just a possible scenario and not yet a concrete
model. It remains to be seen whether one can construct concrete string models which are
sufficiently under control to confirm this scenario.

• The realization that flux compactifications generically lead to local minima fixing all moduli
motivated to the so-called landscape picture of string theory, which seems to indicate that
there exists an immense number of (meta-) stable solutions to the string equations of motion
(we will come back this in final lecture).
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Figure 7: The scalar potential (1015 ·V (σ)) for the choice A = 1, a = 0.1, W0 = −10−4, D = 2.7 ·10−11

4. Toward realistic brane and flux compactifications

A natural step is to combine the ideas of flux compactifications with the methods for con-
structing quasi-realistic string models on intersecting/magnetised D-branes. The aim is to construct
chiral semi-realistic Standard-like models with partially frozen moduli.

As a concrete example consider the Type IIB ΩR(−1)FL orientifold on

M =
T 6

Z2 ×Z2
(4.1)

where R reflects all six internal directions and the two Z2 actions are given by

Θ :





z1 →−z1
z2 →−z2
z3 → z3

, Θ′ :
{z1 → z1

z2 →−z2
z3 →−z3.

(4.2)

Depending on the discrete torsion between these two Z2 operations the resulting orbifold has either
(h21,h11) = (51,3) or (h21,h11) = (3,51). Here we consider the first of these two models, which
has 8 3-cycles in the untwisted sector and 32 3-cycles in each of the three Z2 twisted sectors.
Following [21, 22, 23, 24], in order to apply the general methods introduced in the first lectures, let
us dwell upon this example in more detail.

4.1 A supersymmetric G3 flux

The fluxes F3 and H3 obey the Bianchi identity and take values in H3(M,Z), i.e.

1
(2π)2α′

Z

M
H3 ∈ NminZ,

1
(2π)2α′

Z

M
F3 ∈ NminZ, (4.3)

where Nmin is an integer which guarantees that in orbifold models we only turn on untwisted 3-
form fluxes, for which we can trust the supergravity approximation. Taking also the orientifold
projection into account in the T 6/Z2 ×Z2 orbifold one gets Nmin = 8.
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Due to the Z2 ×Z2 action the complex structure of T 6 is partially fixed, so that T 6 = T 2 ×
T 2 ×T 2. Defining on each T 2 factor complex coordinates

zI = xI + τIyI, (4.4)

a symplectic basis of H3(M ,Z) is given by

α0 = dx1 ∧dx2 ∧dx3, αi = (−1)i−1 dyi ∧dx j ∧dxk,

βi = (−1)i dxi ∧dy j ∧dyk, β0 = −dy1 ∧dy2 ∧dy3, (4.5)

with i 6= j 6= k 6= i and j < k. These 3-forms satisfy
Z

M
αI ∧βJ = δIJ. (4.6)

In addition the covariantly constant holomorphic 3-form can be expressed as

Ω3 = dz1 ∧dz2 ∧dz3 = α0 + τiαi −βiτ jτk + τ1τ2τ3β0

= XΛαΛ −FΛβΛ. (4.7)

Now, choosing the G-flux to be

F3 = α0 +β0

H3 = α0 −∑
i

αi −∑
i

βi −2β0 (4.8)

the resulting superpotential can be expressed as

W =
Z

G∧Ω3 (4.9)

= (1− τ)τ1τ2τ3 − τ(τ1τ2 + τ2τ3 + τ1τ3)− τ(τ1 + τ2τ3)− (1+2τ).

Since the G-flux is totally symmetric with respect to the three T 2 factors, we can set τ1 = τ2 = τ3 = t
and try to solve the supersymmetry conditions W = ∂W/∂τ = ∂W/∂t = 0. One finds that the
solution to these three equations in two variables is

t = τ = e
2πi
3 . (4.10)

At this point the G-flux can be written as

1
(2π)2α′ G =

8(1− τ)√
3

(dz1dz2dz3 +dz1dz2dz3 +dz1dz2dz3), (4.11)

which apparently is indeed of type G(2,1) and yields a contribution N f lux/4 = 48 to the D3-brane
tadpole cancellation condition.
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4.2 MSSM like magnetized D-branes

In order to cancel the resulting tadpoles, one introduces magnetised D9-branes, which are
T-dual to the intersecting D6-branes. Such a magnetised brane is characterised by three pairs of
integers (nI

a,m
I
a) which satisfy

mI
a

2π

Z

T 2
I

F I
a = nI

a, (4.12)

where the mI
a denote the wrapping number of the D9-brane around the torus T 2

I and nI
a is the

magnetic flux. The orientifold projection acts as follows on these quantum numbers ΩR(−1)FL :
(nI

a,m
I
a)→ (nI

a,−mI
a). Since h11 = 3 one gets in the orientifold four tadpole cancellation conditions

∑
a

Na n1
a n2

a n3
a = 8− N f lux

4 (4.13)

∑
a

Na nI
a mJ

a mK
a = −8 for I 6= J 6= K 6= I. (4.14)

In order for each brane to preserve the same supersymmetry as the orientifold planes, they have to
satisfy

∑
I

arctan
(

mI
aK I

nI
a

)
= 0, (4.15)

where K I denotes the volume of the I-th torus T 2 in units of α′. The number of chiral fermions
between two different magnetised branes is given by the index

Iab = ∏
I

(nI
a mI

b −mI
a nI

b) (4.16)

and can lead to matter in bifundamental, symmetric or anti-symmetric representations of the gauge
group.

Taking the flux quantisation with Nmin = 8 into account, the contribution of the flux to the
D3-brane tadpole is given by N f lux/4 ∈ 16Z. Therefore, for non-trivial flux the right hand side of
the D3-brane tadpole cancellation condition (4.13) is always negative.

Consider for instance the magnetised brane (nI
a,m

I
a) = (−2,1)(−3,1)(−4,1), which is super-

symmetric for

arctan(A1/2)+ arctan(A2/3)+ arctan(A3/4) = π (4.17)

and contributes as (−24,−4,−2,−3) to the four tadpole conditions and can therefore compensate
the negative contributions of the four O-planes and the flux.

Introducing the supersymmetric magnetised branes shown in Table 2 [23] cancels all the tad-
pole and gives rise to a one-generation MSSM-like model with gauge group

G = SU(3)×SU(2)×SU(2)×U(1)B−L × [U(1)′×USp(8)]. (4.18)

Supersymmetry enforces A2 = A3. For more technical and phenomenological details of such mod-
els please consult the original literature. Note that the branes b,c can be placed directly on top the
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Table 2: Wrapping numbers for semi-realistic model.

Na (n1
a,m

1
a) (n2

a,m
2
a) (n3

a,m
3
a)

Na = 3 (1,0) (1,1) (1,−1)

Nb = 1 (0,1) (1,0) (0,−1)

Nc = 1 (0,1) (0,−1) (1,0)

Nd = 1 (1,0) (1,1) (1,−1)

Nh1 = 1 (−2,1) (−3,1) (−4,1)

Nh2 = 1 (−2,1) (−4,1) (−3,1)

N f = 4 (1,0) (1,0) (1,0)

corresponding O7-planes yielding a gauge group SU(2)× SU(2). This example shows that it is
indeed possible to construct supersymmetric semi-realistic string models with fluxes and partially
frozen moduli. This is an encouraging observation, but of course much more work is needed to
really establish an entire class of such models.

As customary, let me end this lecture with some comments:

• In our considerations we neglected the backreaction of the magnetized D9-branes.

• Three generation MSSM like models are possible with supersymmetry breaking fluxes (i.e.
G(0,3) 6= 0). The backreaction of this flux component induces soft supersymmtry breaking
terms on the magnetised D9-branes.

5. Statistics of string vacua

We have seen that flux compactifications lead to moduli stabilisation, thereby giving rise to
many in general discrete (non-)supersymmetric vacua, for which the low energy effective action is
different. In fact, fluxes reduce the continuous moduli space of vacua to a countable discretuum.
One may ask:

How many flux vacua are there?

Following [25], let us make an estimate. Consider Type IIB compactified on a Calabi-Yau manifold
with b3 3-cycles αi. Now we turn on general G-flux through these 3-cycles

1
(2π)2α′

Z

M
H3 = ∑

i

N i
NS αi,

1
(2π)2α′

Z

M
F3 = ∑

i

N i
R αi, (5.1)

so that

N f lux =
1

(2π)4α′2

Z

F3 ∧H3 = ηi jN
i
NS N j

R > 0 (5.2)

with ηi j =
R

αi ∧α j. The tadpole cancellation condition reads

N f lux

2 +ND−branes = L∗ (5.3)
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where L∗ denotes the contribution of the orientifold planes. Now, we want to count the number of
solutions with 0 ≤ L ≤ L∗ with L = N f lux/2. Following [26, 25] this number is given by

N f lux(L ≤ L∗) = ∑
susy vac

θ(L∗−L)

= ∑
vac

1
2πi

Z

C

dα
α

eα(L∗−L) (5.4)

=
1

2πi

Z

C

dα
α

eαL∗

(
∑
vac

e−
α
2 NηN

)

where the path C in the complex plane runs parallel to the y axis with small positive x. After
approximating the discrete sum over the flux quanta by an integral, the sum over all vacua can be
written as

N (α) = ∑
vac

e−
α
2 NηN

=
Z

M
d2mz

Z

d4mNe−
α
2 NηN δ2m(DW ) |detD2W | (5.5)

with m = b3/2 and M denoting a fundamental region in the complex structure/dilaton moduli space.
However, the scaling of the number of vacua with L∗ can be estimated without evaluating this
integral. Let us rescale N → N/

√
α, which implies N (α) → α−2mN (1) so that gets

N f lux(L ≤ L∗) =
1

2πi

Z

C

dα
α2m+1 eαL∗ N (1)

= θ(L∗)
L2m
∗

(2m)! N (1). (5.6)

This is good approximation as long as the radius of the sphere in N-space is large enough, i.e.
L∗ � 2m. For typical numbers such as L∗ ' 1000 (as they appear in F-theory) and m ' 200 one
gets N f lux ' 10250. This is an amazingly large number, which as we will discuss in a moment,
sheds some new light on the string vacuum problem.

In [26] the integral (5.5) was evaluated further (with |detD2W | → detD2W ) leading eventually
to the formula

N f lux(L ≤ L∗) =
2πL2m

∗
πn (2m)!

Z

F ×H
det(−R−ω) (5.7)

where F denotes the fundamental region of SL(2,Z), H the fundamental region of the complex
structure moduli space and R and ω the curvature and Kähler two forms.

In view of this huge vacuum degeneracy, the so-called string landscape, M.R. Douglas has
proposed a statistical approach to the string vacuum problem [27]. In its pragmatic version it
says that complementary to a (necessary) model by model search one should study the statistical
distribution of various physical quantities in the ensemble of string vacua. Such an approach might
be helpful to

• estimate the frequency with which standard-like string models arise

• get an idea in which regions of the landscape to look for realistic models
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• find statistical evidence that standard-like properties are extremely rare, i.e. almost excluded
→ falsification of string theory

• argue for a uniform distribution of certain physical quantities like for instance the cosmolog-
ical constant, shedding a new light on so-called fine tuning problems

More philosophically, one can also combine the landscape picture with the weak anthropic princi-
ple, saying that in some meta-world all string theory vacua are realized and from the many possi-
bilities, we of course happen to live in a (meta-)stable one where the physical parameters have just
the right values to bring about almost intelligent life forms. This might explain why some anthrop-
ically essential physical quantities like the cosmological constant have the "fine tuned" value we
observe.

Of course no final word has been spoken in this matter and one should carry on investigating
the set of string vacua with all possible means.
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