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Contents

1. Introduction 2

2. Helicity Amplitudes 3
2.1 Spinors 3
2.2 Scattering Amplitudes 6
2.3 Maximally Helicity Violating Amplitudes 7

3. Twistor Space 8
3.1 Conformal Invariance of Scattering Amplitudes 8
3.2 Transform to Twistor Space 9
3.3 Scattering Amplitudes in Twistor Space 11

4. Twistor String Theory 13
4.1 Brief Review of Topological Strings 13
4.2 Open String B-model on a Super-Twistor Space 15
4.3 D-Instantons 17

5. Tree Level Amplitudes from Twistor String Theory 18
5.1 Basic Setup 18
5.2 Higher Degree Instantons 21
5.3 MHV Diagrams 24
5.4 Heuristic Derivation of MHV Diagrams from Twistor String Theory 28

6. Closed Strings 31
6.1 Conformal Supergravity 32

7. Berkovits’s Open Twistor String 33
7.1 The Spectrum 33
7.2 Tree Level Yang-Mills Amplitudes 35

8. Recent Results in Perturbative Yang-Mills 36
8.1 BCFW Recursion Relations 36

8.1.1 Examples 39
8.2 One-Loop N = 4 Amplitudes of Gluons and Quadruple Cuts 39

8.2.1 Review of The Unitarity-Based Method 40
8.2.2 Quadruple Cuts 42
8.2.3 Examples 45

004 / 2



P
o
S
(
R
T
N
2
0
0
5
)
0
0
4

Twistor String Theory and Perturbative Yang-Mills Theory Freddy Cachazo and Peter Svrček

1. Introduction

The idea that a gauge theory should be dual to a string theory goes back to ’t Hooft [46].
’t Hooft considered U(N) gauge theory in the large N limit while keeping λ = g2

Y MN fixed. He
observed that the perturbative expansion of Yang-Mills can be reorganized in terms of Riemann
surfaces, which he interpreted as an evidence for a hypothetical dual string theory with string
coupling gs ∼ 1/N.

In 1997, Maldacena proposed a concrete example of this duality [54]. He considered the
maximally supersymmetric Yang-Mills theory and conjectured that it is dual to type IIB string
theory on AdS5×S5. This duality led to many new insights from string theory about gauge theories
and vice versa. At the moment, we have control over the duality only for strongly coupled gauge
theory. This corresponds to the limit of large radius of AdS5 ×S5 in which the string theory is well
described by supergravity. However, QCD is asymptotically free, so we would also like to have a
string theory description of a weakly coupled gauge theory.

In weakly coupled field theories, the natural object to study is the perturbative S matrix. The
perturbative expansion of the S matrix is conventionally computed using Feynman rules. Starting
from early studies of de Witt [40], it was observed that scattering amplitudes show simplicity that
is not apparent from the Feynman rules. For example, the maximally helicity violating (MHV)
amplitudes can be expressed as simple holomorphic functions.

Recently, Witten proposed a string theory that is dual to a weakly coupled N = 4 gauge theory
[69]. The perturbative expansion of the gauge theory is related to D-instanton expansion of the
string theory. The string theory in question is the topological open string B-model on a Calabi-Yau
supermanifold CP

3|4, which is a supersymmetric generalization of Penrose’s twistor space.
At tree level, evaluating the instanton contribution has led to new insights about scattering

amplitudes. ‘Disconnected’ instantons give the MHV diagram construction of amplitudes in terms
of Feynman diagrams with vertices that are suitable off-shell continuations of the MHV amplitudes
[32]. The ‘connected’ instanton contributions express the amplitudes as integrals over the moduli
space of holomorphic curves in twistor space [64]. Surprisingly, the MHV diagram construction
and the connected instanton integral can be related via localization on the moduli space [39].

Despite the successes of the twistor string theory at tree level, there are still many open ques-
tions. The most pressing issue is perhaps the closed strings that give N = 4 conformal supergravity
[16]. At tree level, it is possible to recover the Yang-Mills scattering amplitudes by extracting the
single-trace amplitudes. At loop level, the single trace gluon scattering amplitudes receive contri-
butions from internal supergravity states, so it would be difficult to extract the Yang-Mills contri-
bution to the gluon scattering amplitudes. Since, N = 4 Yang-Mills theory is consistent without
conformal supergravity, it is likely that there exists a version of the twistor string theory that is
dual to pure Yang-Mills theory. Indeed, the MHV diagram construction that at tree level has been
derived from twistor string theory seems to compute loop amplitudes as well [25].

The study of twistor structure of scattering amplitudes has inspired new developments in per-
turbative Yang-Mills theory itself. At tree level, this has led to recursion relations for on-shell
amplitudes [28]. At one loop, unitarity techniques [22, 21] have been used to find new ways of
computing N = 4 [27] and N = 1 [30] Yang-Mills amplitudes.
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In these lectures we will discuss aspects of twistor string theory. Along the way we will
learn lessons about Yang-Mills scattering amplitudes. The string theory sheds light on Yang-Mills
perturbation theory and leads to new methods for computing Yang-Mills scattering amplitudes. In
the last section, we will describe further developments in perturbative Yang-Mills.

2. Helicity Amplitudes

2.1 Spinors

Recall1 that the complexified Lorentz group is locally isomorphic to

SO(3,1,C) ∼= Sl(2,C)×Sl(2,C), (2.1)

hence the finite dimensional representations are classified as (p,q) where p and q are integer or
half-integer. The negative and positive chirality spinors transform in the representations (1/2,0)

and (0,1/2) respectively. We write generically λa,a = 1,2 for a spinor transforming as (1/2,0)

and λ̃ȧ, ȧ = 1,2 for a spinor transforming as (0,1/2).

The spinor indices of type (1/2,0) are raised and lowered using the antisymmetric tensors εab

and εab obeying ε12 = 1 and εacεcb = δa
b

λa = εabλb λa = εabλb. (2.2)

Given two spinors λ and λ′, both of negative chirality, we can form the Lorentz invariant product

〈λ,λ′〉 = εabλaλ′b. (2.3)

It follows that 〈λ,λ′〉 = −〈λ′,λ〉, so the product is antisymmetric in its two variables. In particular,
〈λ,λ′〉 = 0 implies that λ equals λ′ up to a scaling λa = cλ′a.

Similarly, we lower and raise the indices of positive chirality spinors with the antisymmetric
tensor εȧḃ and its inverse εȧḃ. For two spinors λ̃ and λ̃′, both of positive chirality we define the
antisymmetric product

[λ̃, λ̃′] = −[λ̃′, λ̃] = εȧḃλ̃ȧλ̃′ḃ. (2.4)

The vector representation of SO(3,1,C) is the (1/2,1/2) representation. Thus a momentum
vector pµ,µ = 0, . . . ,3 can be represented as a bi-spinor paȧ with one spinor index a and ȧ of each
chirality. The explicit mapping from pµ to paȧ can be made using the chiral part of the Dirac
matrices. In signature +−−−, one can take the Dirac matrices to be

γµ =

(

0 σµ

σ̄µ 0

)

, (2.5)

where σµ = (1,~σ), σ̄µ = (1,−~σ) with~σ being the 2×2 Pauli matrices. For any vector, the relation
between pµ, and paȧ is

paȧ = pµσµ
aȧ = p0 +~σ ·~p. (2.6)

1The sections 2−4 are based on lectures given by E. Witten at PITP, IAS Summer 2004
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It follows that,
pµ pµ = det(paȧ). (2.7)

Hence, pµ is lightlike if the corresponding determinant is zero. This is equivalent to the rank of the
2×2 matrix paȧ being less than or equal to one. So pµ is lightlike precisely, when it can be written
as a product

paȧ = λaλ̃ȧ (2.8)

for some spinors λa and λ̃ȧ. For a given null vector p, the spinors λ and λ̃ are unique up to a scaling

(λ, λ̃) → (tλ, t−1λ̃) t ∈ C
∗. (2.9)

There is no continuous way to pick λ as a function p. In Minkowski signature, the λ’s form the
Hopf line bundle over the sphere S2 of directions of the lightlike vector p.

For complex momenta, the spinors λa and λ̃ȧ are independent complex variables, each of
which parameterizes a copy of CP

1. Hence, the complex lightcone pµ pµ = 0 is a complex cone
over the connected manifold CP

1 ×CP
1.

For real null momenta in Minkowski signature +−−−, we can fix the scaling up to a Z2 by
requiring λa and λ̃ȧ to be complex conjugates

λ̄ȧ = ±λ̃ȧ. (2.10)

Hence, the negative chirality spinors λ are conventionally called ‘holomorphic’ and the positive
chirality spinor ‘anti-holomorphic.’ In (2.10) the + sign is for a future pointing null vector pµ, and
− is for a past pointing pµ.

One can also consider other signatures. For example in the signature ++−−, the spinors λ
and λ̃ are real and independent. Indeed, with signature + +−−, the Lorentz group is SO(2,2),

which is locally isomorphic to Sl(2,R)×Sl(2,R). Hence, the spinor representations are real.
Let us remark, that if p and p′ are two lightlike vectors given by paȧ = λaλ̃ȧ and p′aȧ = λ′

aλ̃′
ȧ

then their scalar product can be expressed as2

2p · p′ = 〈λ,λ′〉[λ̃, λ̃′]. (2.11)

Given p, the additional physical information in λ is equivalent to a choice of wavefunction of
a helicity −1/2 massless particle with momentum p. To see this, we write the chiral Dirac equation
for a negative chirality spinor ψa

0 = iσµ
aȧ∂µψa. (2.12)

A plane wave ψa = ρa exp(ip ·x) satisfies this equation if and only if paȧρa = 0. Writing paȧ = λaλ̃ȧ,

we get λaρa = 0, that is ρa = c · λa for a constant c. Hence the negative helicity fermion has
wavefunction

ψa = cλa exp(ixaȧλaλ̃ȧ). (2.13)

Similarly, λ̃ defines a wavefunction for a helicity +1/2 fermion ψȧ = cλ̃ȧ exp(ixaȧλaλ̃ȧ).

2This differs from the ‘-’ sign convention used in the perturbative QCD literature.
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There is an analogous description of wavefunctions of massless particles of helicity ±1. Usu-
ally, we describe massless gluons with their momentum vector pµ and polarization vector εµ. The
polarization vector obeys the constraint

pµ εµ = 0 (2.14)

that represents the decoupling of longitudinal modes and it is subject to the gauge invariance

εµ → εµ +wpµ, (2.15)

for any constant w. Suppose that instead of being given only a lightlike vector paȧ, one is also given
a decomposition paȧ = λaλ̃ȧ. Then we have enough information to determine the polarization vector
up to a gauge transformation once the helicity is specified. For a positive helicity gluon, we take

ε+
aȧ =

µaλ̃ȧ

〈µ,λ〉 , (2.16)

where µ is any negative chirality spinor that is not a multiple of λ. To get a negative helicity
polarization vector, we take

ε−aȧ =
λaµ̃ȧ

[λ̃, µ̃]
, (2.17)

where µ̃ is any positive chirality spinor that is not a multiple of λ̃. We will explain the expression
for the positive helicity vector. The negative helicity case is similar.

Clearly, the constraint
pµ ε+

µ = paȧε+
aȧ = 0 (2.18)

holds because λ̃ȧλ̃ȧ = 0. Moreover, ε+ is also independent of µa up to a gauge transformation. To
see this, notice that µ lives in a two dimensional space that is spanned with λ and µ. Hence, any
change in µ̃ is of the form

δµa = αµa +βλa (2.19)

for some parameters α and β. The polarization vector (2.16) is invariant under the α term, because
this simply rescales µ and ε+

aȧ is invariant under the rescaling of µ. The β term amounts to a gauge
transformation of the polarization vector

δε+
aȧ = β

λaλ̃ȧ

〈µ,λ〉 . (2.20)

Under the scaling (λ, λ̃) → (tλ, t−1λ̃), t ∈ C
∗ the polarization vectors scale like

ε− → t+2ε− ε+ → t−2ε+. (2.21)

This could have been anticipated, since λ̃ȧ gives the wavefunction of a helicity +1/2 particle so a
helicity +1 polarization vector should scale like λ̃2. Similarly, the helicity −1 polarization vector
scales like λ2.

To show more directly that ε+ describes a massless particle of helicity +1, we must show that
the corresponding linearized field strength Fµν = ∂µAν − ∂νAµ is anti-selfdual. Indeed, the field
strength written in a bispinor notation has the decomposition

Faȧbḃ = εab f̃ȧḃ + εȧḃ fab, (2.22)
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where fab and f̃ȧḃ are the selfdual and anti-selfdual parts of F. Substituting Aaȧ = ε+
aȧ exp(ixaȧλaλ̃ȧ)

we find that Faȧbḃ = εabλ̃ȧλ̃ḃ exp(ixaȧλaλ̃ȧ).

So far, we have seen that the wavefunction of a massless particle with helicity h scales under
(λ, λ̃) → (tλ, t−1λ̃) as t−2h if |h| ≤ 1. This is true for any h, as can be seen from the following
argument. Consider a massless particle moving in the ~n direction. Then a rotation by angle θ
around the~n axis acts on the spinors as

(λ, λ̃) → (e−iθ/2λ,e+iθ/2λ̃). (2.23)

Hence, λ, λ̃ carry − 1
2 or + 1

2 units of angular momentum around the ~n axis. Clearly, a massless
particle of helicity h carries h units of angular momentum around the~n axis. Hence the wavefunc-
tion of the particle gets transformed as ψ → eihθψ under the rotation around~n axis, so it obeys the
auxiliary condition

(

λa ∂
∂λa − λ̃ȧ ∂

∂λ̃ȧ

)

ψ(λ, λ̃) = −2hψ(λ, λ̃). (2.24)

Clearly, this constraint holds for wavefunctions of massless particles of any spin. The spinors λ, λ̃
give us a convenient way of writing the wavefunction of massless particle of any spin, as we have
seen in detail above for particles with |h| ≤ 1.

2.2 Scattering Amplitudes

Let us consider scattering of massless particles in four dimensions. Consider the situation with
n particles of momenta p1, p2, . . . , pn. For scattering of scalar particles, the initial and final states
of the particles are completely determined by their momenta. The scattering amplitude is simply a
function of the momenta pi,

Ascalar(p1, p2, . . . , pn). (2.25)

In fact, by Lorentz invariance, it is a function of the Lorentz invariant products pi · p j only.
For particles with spin, the scattering amplitude is a function of both the momenta pi and the

wavefunctions ψi of each particle

A(p1,ψ1; . . . ; pn,ψn). (2.26)

Here, A is linear in each of the wavefunctions ψi. The description of ψi depends on the spin of
the particle. As we have seen explicitly above in the case of massless particles of spin 1

2 or 1,

the spinors λ, λ̃ give a unified description of the wavefunctions of particles with spin. Hence, to
describe the wavefunctions, we specify for each particle the helicity hi and the spinors λi and λ̃i.

The spinors determine the momenta pi = λiλ̃i and the wavefunctions ψi(λi, λ̃i,hi). So for massless
particles with spin, the scattering amplitude is a function of the spinors and helicities of the external
particles

A(λ1, λ̃1,h1; . . . ;λn, λ̃n,hn). (2.27)

In labelling the helicities we take all particles to be incoming. To obtain an amplitude with in-
coming particles as well as outgoing particles, we use crossing symmetry, that relates an incoming
particle of one helicity to an outgoing particle of the opposite helicity.
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Figure 1: A scattering amplitude of n gluons in Yang-Mills theory. Each gluon comes with the color factor
Ti, spinors λi, λ̃i and helicity label hi = ±1.

It follows from (2.24) that the amplitude obeys the conditions
(

λa
i

∂
∂λa

i
− λ̃ȧ

i
∂

∂λ̃ȧ
i

)

A(λi, λ̃i,hi) = −2hiA(λi, λ̃i,hi) (2.28)

for each particle i, with helicity hi. In summary, a general scattering amplitude of massless particles
can be written as

A = (2π)4δ4

(

∑
i

λa
i λ̃ȧ

i

)

A(λi, λ̃i,hi), (2.29)

where we have written explicitly the delta function of momentum conservation.

2.3 Maximally Helicity Violating Amplitudes

To make the discussion more concrete, we consider tree level scattering of n gluons in Yang-
Mills theory. These amplitudes are of phenomenological importance. The multijet production at
LHC will be dominated by tree level QCD scattering.

Consider Yang-Mills theory with gauge group U(N). Recall that tree level scattering ampli-
tudes are planar and lead to single trace interactions. In an index loop, the gluons are attached
in a definite cyclic order, say 1,2, . . . ,n. Then the amplitude comes with a group theory factor
TrT1T2 . . .Tn. It is sufficient to give the amplitude with one cyclic order. The full amplitude is
obtained from this by summing over the cyclic permutations to achieve Bose symmetry

A = gn−2(2π)4δ4

(

n

∑
i

pi

)

A(1,2, . . . ,n)Tr(T1T2 . . .Tn) + permutations. (2.30)

Here, g is the coupling constant of the gauge theory. In the rest of the lecture notes, we will always
consider gluons in the cyclic order 1,2, . . . ,n and we will omit the group theory factor and the delta
function of momentum conservation in writing the formulas. Hence we will consider the ‘reduced
color ordered amplitude’ A(1,2, . . . ,n).

The scattering amplitude with n incoming gluons of the same helicity vanishes. So does the
amplitude, for n ≥ 3, with n− 1 incoming gluons of one helicity and one of the opposite helic-
ity. The first nonzero amplitudes, the maximally helicity violating (MHV) amplitudes, have n−2
gluons of one helicity and two gluons of the other helicity. Suppose that gluons r,s have negative
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helicity and the rest of gluons have positive helicity. Then the tree level amplitude, stripped of the
momentum delta function and the group theory factor, is

A(r−,s−) = gn−2 〈λr,λs〉4

∏n
k=1〈λk,λk+1〉

. (2.31)

The amplitude A(r+,s+) with gluons r,s of positive helicity and the rest of the gluons of negative
helicity follows from (2.31) by exchange 〈〉 ↔ []. Note, that the amplitude has the correct homo-
geneity in each variable. It is homogeneous of degree −2 in λi for positive helicity gluons; and of
degree −2 for negative helicity gluons i = r,s as required by the auxiliary condition (2.28). The
amplitude A is sometimes called ‘holomorphic’ because it depends on the ‘holomorphic’ spinors
λi only.

3. Twistor Space

3.1 Conformal Invariance of Scattering Amplitudes

Before discussing twistor space, let us show the conformal invariance of the MHV tree level
amplitude. Firstly, we need to construct representation of the conformal group generators in terms
of the spinors λ, λ̃. We will consider the conformal generators for a single particle. The generators
of the n-particle system are given by the sum of the generators over the n particles.

Some of the generators are clear. The Lorentz generators are the first order differential opera-
tors

Jab =
i
2

(

λa
∂

∂λb +λb
∂

∂λa

)

J̃ȧḃ =
i
2

(

λ̃ȧ
∂

∂λ̃ḃ
+ λ̃ḃ

∂
∂λ̃ȧ

)

. (3.1)

The momentum operator is the multiplication operator

Paȧ = λaλ̃ȧ. (3.2)

The remaining generators are the dilatation operator D and the generator of special conformal
transformation Kaȧ. The commutation relations of the dilatation operator are

[D,P] = iP, [D,K] = −iK, (3.3)

so P has dimension +1 and K has dimension −1. We see from (3.2) that it is natural to take λ and
λ̃ to have dimension 1/2. Hence, a natural guess for the special conformal generator respecting all
the symmetries is

Kaȧ =
∂2

∂λa∂λ̃ȧ
. (3.4)

We find the dilatation operator D from the closure of the conformal algebra. The commutation
relation

[Kaȧ,P
bḃ] = −i

(

δa
bJ̃ȧ

ḃ +δȧ
ḃJa

b +δa
bδȧ

ḃD
)

(3.5)
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determines the dilatation operator to be

D =
i
2

(

λa ∂
∂λa + λ̃ȧ ∂

∂λ̃ȧ
+2
)

. (3.6)

We are now ready to verify that the MHV amplitude

A(r−,s−) = (2π)4δ4

(

∑
i

λa
i λ̃ȧ

i

)

〈λr,λs〉4

∏n
k=1〈λk,λk+1〉

, (3.7)

is invariant under the conformal group. The Lorentz generators are clearly symmetries of the ampli-
tude. The momentum operator annihilates the amplitude thanks to the delta function of momentum
conservation.

It remains to verify that the amplitude is annihilated by D and K. For simplicity, we will
only consider the dilatation operator D. The numerator contains the delta function of momentum
conservation which has dimension D = −4 and the factor 〈λr,λs〉4 of dimension 4. Hence, D
commutes with the numerator. So we are left with the denominator

1
∏n

k=1〈λk,λk+1〉
. (3.8)

This is annihilated by Dk for each particle k, since the −2 coming from the second power of λk in
the denominator gets cancelled against the +2 from the definition of the dilatation operator (3.6).

3.2 Transform to Twistor Space

We have demonstrated conformal invariance of the MHV amplitude, however the representa-
tion of the conformal group that we have encountered above is quite exotic. The Lorentz generators
are first order differential operators, but the momentum is a multiplication operator and the special
conformal generator is a second order differential operator.

We can put the action of the conformal group into a more standard form if we make the
following transformation

λ̃ȧ → i ∂
∂µȧ

∂
∂λ̃ȧ

→ iµȧ. (3.9)

Making this substitution we have arbitrarily chosen to Fourier transform λ̃ rather than λ. This choice
breaks the symmetry between positive and negative helicities. The amplitude with n1 positive
helicity and n2 negative helicity gluons has different description in twistor space from an amplitude
with n2 positive helicity gluons and n1 negative helicity gluons.

Upon making this substitution, all operators become first order. The Lorentz generators take
the form

Jab =
i
2

(

λa
∂

∂λb +λb
∂

∂λa

)

J̃ȧḃ =
i
2

(

µȧ
∂

∂µḃ
+µḃ

∂
∂µȧ

)

. (3.10)
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The momentum and special conformal operators become

Paȧ = iλa
∂

∂µȧ

Kaȧ = iµȧ
∂

∂λa . (3.11)

Finally, the dilatation operator (3.6) becomes a homogeneous first order operator

D =
i
2

(

λa ∂
∂λa −µȧ ∂

∂µȧ

)

. (3.12)

This representation of the four dimensional conformal group is easy to explain. The conformal
group of Minkowski space is SO(4,2) which is the same as SU(2,2). SU(2,2), or its complexifi-
cation Sl(4,C), has an obvious four-dimensional representation acting on

ZI = (λa,µȧ). (3.13)

ZI is called a twistor and the space C
4 spanned by ZI is called the twistor space. The action of

Sl(4,C) on the ZI is generated by 15 traceless matrices ΛI
J, I,J = 1, . . . ,4, that correspond to the

15 first order operators Jab, J̃ȧḃ,D,Paȧ,Kaȧ.

If we are in signature ++−−, the conformal group is SO(3,3) ∼= Sl(4,R). The twistor space
is a copy of R

4 and we can consider λ and µ to be real. In the Euclidean signature ++++, the
conformal group is SO(5,1) ∼= SU∗(4) where SU∗(4) is the noncompact version of SU(4), so we
must think of twistor space as a copy of C

4.

For signature ++−−, where λ̃ is real, the transformation from momentum space scattering
amplitudes to twistor space scattering amplitudes is made by a simple Fourier transform that is
familiar from quantum mechanics

Ã(λi,µi) =
Z n

∏
j=1

d2λ̃ j

(2π)2 exp(i[µ j, λ̃ j])A(λi, λ̃i). (3.14)

The same Fourier transform turns a momentum space wavefunction ψ(λ, λ̃) to a twistor space
wavefunction

ψ̃(λ,µ) =
Z

d2λ̃
(2π)2 exp(i[µ, λ̃])ψ(λ, λ̃). (3.15)

Recall that the scattering amplitude of massless particles obeys the auxiliary condition
(

λa
i

∂
∂λa

i
− λ̃ȧ

i
∂

∂λ̃ȧ
i

)

A(λi, λ̃i,hi) = −2hiA(λi, λ̃i,hi) (3.16)

for each particle i, with helicity hi. In terms of λi and µi, this becomes
(

λa
i

∂
∂λa

i
+µȧ

i
∂

∂µȧ
i

)

Ã(λi,µi,hi) = −(2hi +2)Ã(λi,µi,hi). (3.17)

There is a similar condition for the twistor wavefunctions of particles. The operator on the left hand
side coincides with ZI ∂

∂ZI that generates the scaling of the twistor coordinates

ZI → tZI, t ∈ C
∗. (3.18)
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So the wavefunctions and scattering amplitudes have known behavior under the C
∗ action

ZI → tZI. Hence, we can identify the sets of ZI that differ by the scaling ZI → tZI and throw away
the point ZI = 0. We get the projective twistor space3

CP
3 or RP

3 if ZI are complex or real-valued.
The ZI are the homogeneous coordinates on the projective twistor space. It follows from (3.17) that,
the scattering amplitudes are homogeneous functions of degree −2hi −2 in the twistor coordinates
ZI

i of each particle particle. In the complex case, this means that scattering amplitudes are sections
of the complex line bundle O(−2hi −2) over a CP

3
i for each particle. For further details on twistor

transform, see any standard textbook on twistor theory, e.g. [47, 4].

3.3 Scattering Amplitudes in Twistor Space

In an n gluon scattering process, after the Fourier transform into twistor space, the external
gluons are associated with points Pi in the projective twistor space. The scattering amplitudes are
functions of the twistors Pi, that is, they are functions defined on the product of n copies of twistor
space, one for each particle.

Let us see what happens to the tree level MHV amplitude with n−2 gluons of positive helicity
and 2 gluons of negative helicity, after Fourier transform into twistor space. We work in ++−−
signature, for which the twistor space is a copy of RP

3. The advantage of ++−− signature is that
the transform to twistor space is an ordinary Fourier transform and the scattering amplitudes are
ordinary functions on a product of RP

3’s, one for each particle. With other signatures, the twistor
transform involves ∂̄-cohomology and other mathematical machinery.

We recall that the MHV amplitude with negative helicity gluons r,s is

A(λi, λ̃i) = (2π)4δ4(∑
i

λiλ̃i) f (λi), (3.19)

where
f (λi) = gn−2 〈λr,λs〉4

∏k〈λk,λk+1〉
. (3.20)

The only property of f (λi), that we need is that it is a function of the holomorphic spinors λi only.
It does not depend on the anti-holomorphic spinors λ̃i.

We express the delta function of momentum conservation as an integral

(2π)4δ4(∑
i

λa
i λ̃ȧ

i ) =
Z

d4xaȧ exp
(

ixbḃ ∑
i

λb
i λ̃ḃ

i

)

. (3.21)

Hence, we can rewrite the amplitude as

A(λi, λ̃i) =
Z

d4xexp
(

ixbḃ ∑
i

λb
i λ̃ḃ

i

)

f (λi). (3.22)

To transform the amplitude into twistor space, we simply carry out a Fourier transform with respect
to all λ̃’s. Hence, the twistor space amplitude is

A(λi,µi) =
Z

d2λ̃1
(2π)2 . . .

d2λ̃n

(2π)2 exp
(

i
n

∑
j=1

µ jȧλ̃ȧ
j

)

Z

d4x exp
(

ixbḃ ∑
j

λb
j λ̃

ḃ
j

)

f (λi). (3.23)

3The twistor wavefunctions (3.15) are regular only on the subset CP
′3|4 of CP

3|4 with (λ1,λ2) 6= (0,0), which is
the precise definition of the projective twistor space. In the rest of the lecture notes, we do not distinguish between these
two spaces, unless necessary.
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The only dependece on λ̃i is in the exponential factors. Hence the integrals over λ̃ j gives a product
of delta functions with the result [57]

A(λi,µi) =
Z

d4x
n

∏
j=1

δ2(µ jȧ + xaȧλa
j) f (λi). (3.24)

This equation has a simple geometrical interpretation. Pick some xaȧ and consider the equation

µȧ + xaȧλa = 0. (3.25)

The solution set for x = 0 is a RP
1 or CP

1 depending on whether the variables are real or com-
plex. This is true for any x as the equation lets us solve for µȧ in terms of λa. So (λ1,λ2) are the
homogeneous coordinates on the curve.

In real twistor space, which is appropriate for signature ++−−, the curve RP
1 can be de-

scribed more intuitively as a straight line, see fig. 2. Indeed, throwing away the set Z1 = 0, we can
describe the rest of RP

3 as a copy of R
3 with the coordinates xi = Zi/Z1, i = 2,3,4. The equations

(3.25) determine two planes whose intersection is the straight line in question.
In complex twistor space, the genus zero curve CP

1 is topologically a sphere S2. The CP
1

is an example of a holomorphic curve in CP
3. The simplest holomorphic curves are defined by

vanishing of a pair of homogeneous polynomials in the Z I

f (Z1, . . . ,Z4) = 0
g(Z1, . . . ,Z4) = 0. (3.26)

If f is homogeneous of degree d1 and g is homogeneous of degree d2, the curve has degree d1d2.

The equations
µḃ + xbḃλb = 0, ḃ = 1,2 (3.27)

are both linear, d1 = d2 = 1. Hence the degree of the CP
1 is d = d1d2 = 1. Moreover, every degree

one genus zero curve in CP
3 is of the form (3.27) for some xbḃ.

The area of a holomorphic curve of degree d, using the natural metric on CP
3, is 2πd. So the

curves we found with d = 1 have the minimal area among nontrivial holomorphic curves. They are
associated with the minimal nonzero Yang-Mills tree amplitudes, the MHV amplitudes.

Going back to the amplitude (3.24), the δ-functions mean that the amplitude vanishes unless
µ jȧ + xaȧλa

j = 0, j = 1, . . .n, that is, unless some curve of degree one determined by xaȧ contains
all n points (λ j,µ j). The result is that the MHV amplitudes are supported on genus zero curves of
degree one. This is a consequence of the holomorphy of these amplitudes.

The general conjecture is that an l-loop amplitude with p gluons of positive helicity and q
gluons of negative helicity is supported on a holomorphic curve in twistor space. The degree of the
curve is determined by

d = q−1+ l. (3.28)

The genus of the curve is bounded by the number of the loops

g ≤ l. (3.29)
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(a) (b)
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Figure 2: (a) In complex twistor space CP3, the MHV amplitude localizes to a CP
1. (b) In the real case, the

amplitude is associated to a real line in R
3.

The MHV amplitudes are a special case of this for q = 2, l = 0. Indeed the conjecture in this case
gives that MHV amplitudes are supported in twistor space on a genus zero curve of degree one.

The natural interpretation of this is that the curve is the worldsheet of a string. In some way
of describing the perturbative gauge theory, the amplitudes arise from coupling of the gluons to
a string. In the next two sections we discuss a proposal for such a string theory due to Witten
[69] in which the strings in questions are D1-strings. There is an alternative version of twistor
string theory due to Berkovits [15, 17], discussed in section 7, in which the curves come from
fundamental strings. The Berkovits’s twistor string theory seems to give an equivalent description
of the scattering amplitudes. Further proposals [59, 3, 7] have not yet been used for computing
scattering amplitudes.

4. Twistor String Theory

In this section, we will describe a string theory that gives a natural framework for under-
standing the twistor properties of scattering amplitudes discussed in previous section. This is a
topological string theory whose target space is a supersymmetric version of the twistor space.

4.1 Brief Review of Topological Strings

Firstly, let us consider an N = 2 topological field theory in D = 2 [67]. The N = 2 super-
symmetry algebra has two supersymmetry generators Qi, i = 1,2 that satisfy the anticommutation
relations

{Qαi,Qβ j} = δi jγ
µ
αβPµ. (4.1)

In two dimensions, the Lorentz group SO(1,1) is generated by the Lorentz boost L. We diagonalize
L by going into the light-cone frame P± = P0 ±P1,

[L,P±] = ±P±

{L,Q±} = ±1
2Q±. (4.2)

The commutation relations of the N = 2 supersymmetry algebra become

{Q+i,Q+ j} = δi jP+

{Q−i,Q− j} = δi jP−
{Q+i,Q− j} = 0. (4.3)
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We let
Q = Q+1 + iQ+2 +Q−1 ± iQ−2 (4.4)

with either choice of sign. It follows from (4.3) that Q is nilpotent

Q2 = 0, (4.5)

so we would like to consider Q as a BRST operator.
However Q (4.4) is not a scalar so this construction would violate Lorentz invariance. There

is a way out if the theory has left and right R-symmetries R+ and R−. Under R+, the combination
of supercharges Q+1 ± iQ+2 has charge ±1/2 and Q−1 ± iQ−2 is neutral. For R−, the same is true
with ‘left’ and ‘right’ interchanged.

Hence, we can make Q scalar if we modify the Lorentz generator L to be

L′ = L− 1
2R+∓ 1

2R−. (4.6)

At a more fundamental level, this change in the Lorentz generator arises if we replace the stress
tensor Tµν with

T̃µν = Tµν −
1
2(∂µJ+

ν +∂νJ+
µ )∓ 1

2(∂µJ−ν +∂νJ−µ ), (4.7)

where J+
ν and J−µ are the left and right R-symmetry currents. The substitution (4.7) is usually

referred to as ‘twisting’ the stress tensor.
We give a new interpretation to the theory by taking Q to be a BRST operator. A state Ψ is

considered to be physical if it is annihilated by Q

QΨ = 0. (4.8)

Two states Ψ and Ψ′ are equivalent if

Ψ−Ψ′ = QΦ, (4.9)

for some Φ. Similarly, we take the physical operators to commute with the BRST charge

[Q,O] = 0. (4.10)

Two operators are equivalent if they differ by an anticommutator of Q,

O ′ ∼ O +{Q,V }, (4.11)

for some operator V .

The theory with the stress tensor T̃µν and BRST operator Q is called a topological field theory.
The basis for the name is that one can use the supersymmetry algebra to show that the twisted stress
tensor is BRST trivial

T̃µν = {Q,Λµν}. (4.12)

It follows that in some sense the worldsheet metric is irrelevant. The correlation function

〈O1(x1)O2(x2) . . .On(xn)〉Σ (4.13)
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of physical operators Oi obeying [Q,Oi] = 0 on a fixed Riemann surface Σ is independent of metric
on Σ. Indeed, varying the metric gµν → gµν + δgµν, the correlation function stays the same up to
BRST trivial terms

〈O1(x1) . . .On(xn)
Z

Σ
δ(
√

ggµν)T̃µν〉 = 〈O1(x1) . . .On(xn)
Z

Σ
δ(
√

ggµν){Q,Λµν}〉 = 0. (4.14)

More importantly for us, we can also construct a topological string theory in which one obtains
the correlation functions by integrating (4.13) over the moduli of the Riemann surface Σ using Λµν

where the antighost bµν usually appears in the definition of the string measure.
For an N = 2 supersymmetric field theory in two dimensions with anomaly-free left and right

R-symmetries we get two topological string theories, depending on the choice of sign in (4.4).
We would like to consider the case that the N = 2 model is a sigma model with a target space
being a complex manifold X . In this case, the two R-symmetries exist classically, so classically we
can construct the two topological string theories, called the A-model and the B-model. Quantum
mechanically, however, there is an anomaly, and the B-model only exists if X is a Calabi-Yau
manifold.

4.2 Open String B-model on a Super-Twistor Space

To define open strings in the B-model, one needs BRST invariant boundary conditions. The
simplest such conditions are Neumann boundary conditions [68]. Putting in N space filling D5-
branes gives Gl(n,C) (whose compact real form is U(N)) gauge symmetry. The zero modes of
the D5-D5 strings give a (0,1) form gauge field A = Aīdzī in the target space. The BRST operator
acts as the ∂̄ operator and the string ∗ product is just the wedge product. Hence, A is subject to the
gauge invariance

δA = Qε = ∂̄ε+[A,ε], (4.15)

and the string field theory action reduces to the action of the holomorphic Chern-Simons theory
[68]

S =
1
2

Z

Ω∧Tr
(

A∧ ∂̄A+
2
3A∧A∧A

)

, (4.16)

where Ω is the Calabi-Yau volume form.
We would like to consider the open string B-model with target space CP

3, but we cannot,
since CP

3 is not a Calabi-Yau manifold and the B-model is well defined only on a Calabi-Yau
manifold. On a non-Calabi-Yau manifold, the R-symmetry that we used to twist the stress tensor
is anomalous. A way out is to introduce spacetime supersymmetry. Instead of CP

3, which has
homogeneous coordinates ZI, I = 1, . . . ,4 we consider a supermanifold CP

3|N with bosonic and
fermionic coordinates

ZI, ψA I = 1, . . . ,4, A = 1, . . . ,N, (4.17)

with identification of two sets of coordinates that differ by a scaling

(ZI,ψA) ∼= (tZI, tψA) t ∈ C
∗. (4.18)

The CP
3|N is a Calabi-Yau supermanifold if and only if the number of fermionic dimensions is

N = 4. To see this, we construct the holomorphic measure on CP
3|4. We start with the (4|N) form
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on C
4|N

Ω0 = dZ1 . . .dZ4dψ1 . . .dψN (4.19)

and study its behavior under the rescaling symmetry (4.18). For this, recall that dψ scales oppo-
sitely to ψ

(dZI,dψA) → (tdZI, t−1dψA). (4.20)

It follows, that Ω0 is C
∗ invariant if and only if N = 4. In this case we can divide by the C∗ action

and get a Calabi-Yau measure on CP
3|4

Ω =
1
4!εIJKLZIdZJdZKdZL 1

4!εABCDψAψBψCψD. (4.21)

The twistor space CP
3 has a natural Sl(4,C) group action that acts as ZA → ΛA

BZB on the
homogeneous coordinates of CP

3. The real form SU(2,2) of Sl(4,C) is the conformal group of
Minkowski space. Similarly, the super-twistor space CP

3|N has a natural Sl(4|N,C) symmetry. The
real form SU(2,2|N) of this is the superconformal symmetry group with N supersymmetries.

For N = 4, the superconformal group SU(2,2|4) is the symmetry group of N = 4 super-Yang-
Mills theory. In a sense, this is the simplest non-abelian gauge theory in four dimensions. The
N = 4 superconformal symmetry uniquely determines the states and interactions of the gauge
theory. In particular, the beta function of N = 4 gauge theory vanishes.

Now we know a new reason for N = 4 to be special. The topological B-model on CP
3|N

exists if and only if N = 4. The B-model on CP
3|4 has a SU(2,2|4) symmetry coming from the

geometric transformations of the twistor space. This is related via the twistor transform to the
N = 4 superconformal symmetry.

In the topological B-model with space-filling branes on CP
3|4, the basic field is the holomor-

phic gauge field A = AĪdZ Ī ,

A(Z, Z̄,ψ) = A(Z, Z̄)+ψAξA(Z, Z̄)+
1
2!ψAψBψAB(Z, Z̄)+ · · ·+ 1

4!εABCDψAψBψCψDG(Z, Z̄).

(4.22)
The action is the same as (4.16), except that the gauge field A now depends on ψ

S =
1
2

Z

Ω∧Tr
(

A ∂̄A +
2
3A ∧A ∧A

)

, (4.23)

and the holomorphic three form is (4.21). The classical equations of motions obtained from (4.23)
are

∂̄A +A ∧A = 0. (4.24)

Linearizing the equations of motions around the trivial solutions A = 0, they tell us that

∂̄Φ = 0, (4.25)

where Φ is any of the components of A . The gauge invariance reduces to δΦ = ∂̄α. Hence for each
component Φ, the field Φ defines an element of a cohomology group.

This action has the amazing property that its spectrum is the same as that of N = 4 super
Yang-Mills theory in Minkowski space. To see this, we need to use that the elements of (0,1)
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cohomology groups of degree 2h− 2 are related by twistor transform to helicity h free fields on
Minkowski space.

To figure out the degrees of various components A , notice that the action must be invariant
under the C

∗ action ZI → tZI. Since the holomorphic measure is also invariant under the scaling,
the only way that the action (4.23) is invariant is that the superfield A is also invariant, in other
words, A is of degree zero

A ∈ H0,1(CP
3|4,O(0)). (4.26)

Looking back at the expansion (4.22) of the superfield, we identify the components, via the twistor
correspondence, with fields in Minkowski space of definite helicity. A is is of degree zero, just like
the superfield A . Hence, it is related by twistor transform to a field of helicity +1. The field G has
degree −4 to off-set the degree 4 coming the four ψ, so it corresponds to a field of helicity −1.

Continuing in this fashion, we obtain the complete spectrum of N = 4 supersymmetric Yang-Mills
theory. The twistor fields A,ξA,φAB,ξABC,G describe, via twistor transform, particles of helicities
1,+ 1

2 ,0,− 1
2 ,−1 respectively.

The fields also have the correct representations under the SU(4) R-symmetry group. This
symmetry is realized in twistor space by the natural geometric action on the fermionic coordinates
ψA → ΛA

BψB. Hence, ψA transforms in the 4 of the SU(4)R. The holomorphic gauge superfield
A(Z,ψ) is invariant under the R-symmetry, hence the representations of the components of A
must be conjugate to the representations of the ψ factors that they multiply in (4.22). Hence,
A,ξA,φAB,ξABC and G transform in the 1, 4̄,6,4,1 representation of SU(4)R respectively.

4.3 D-Instantons

The action (4.23) also describes some of the interactions of N = 4 super Yang-Mills, but not
all. It cannot describe the full interactions, because an extra U(1) R-symmetry gets in the way. The
fermionic coordinates ψA,A = 1, . . . ,4 have an extra U(1)R besides the SU(4)R considered above.
Indeed, the full R-symmetry group in twistor space is

U(4)R = SU(4)R ×U(1)R, (4.27)

where we take the extra U(1)R, which we call S, to rotate the fermions by a common phase

S : ZI → ZI, ψA → eiθψA. (4.28)

In the B-model, the extra U(1)R is anomalous, since it does not leave fixed the holomorphic mea-
sure Ω ∼ d3Zdψ1 . . .dψ4. Under the S transformation, the holomorphic measure transforms as
Ω → e−4iθΩ, so it has charge S = −4, hence the B-model action has S = −4.

However, as we have set things up so far, the anomaly of the B-model is too trivial to agree
with the anomaly of N = 4 Yang-Mills theory. With the normalization (4.28), the S charges of
fields are given by their degrees. The N = 4 Yang-Mills action is a sum of terms with S = −4 and
S =−8. For illustration, consider the positive and negative helicity gluons that have S-charge 0 and
−4 respectively. The kinetic term and the ++− three-gluon vertex contribute to the S = −4 part
of the Yang-Mills action. The −−+ and the −−++ vertices contribute to the S = −8 part.

The action of the open string B-model (4.23) has S =−4 coming from the anomaly of S of the
holomorphic measure Ω. To get the S = −8 piece of the Yang-Mills action, we need to enrich the
B-model with nonperturbative instanton contributions.
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The instantons in question are Euclidean D1-branes wrapped on holomorphic curves in CP
3|4

on which open string can end. The gauge theory amplitudes come from coupling of the open strings
to the D1-branes. The massless modes on the worldvolume of a D-instanton are a U(1) gauge field
and the modes that describe the motion of the instanton. In the following, we will study mostly
tree level amplitudes. These get contributions from genus zero instantons on which the U(1) line
bundles have a fixed degree d = −1. Hence the bundles do not have any discrete or continuous
moduli, so we will ignore the U(1) gauge field from now on. The modes describing the motion of
the D-instanton make up the moduli space M of holomorphic curves C in the twistor space. To
construct scattering amplitudes we need to integrate over M .

5. Tree Level Amplitudes from Twistor String Theory

5.1 Basic Setup

Recall that the interactions of the full gauge theory come from Euclidean D1-brane instantons
on which the open strings can end. The open strings are described by the holomorphic gauge
field A . To find the coupling of the open strings to the D-instantons, let us consider the effective
action of the D1-D5 and D5-D1 strings. Quantizing the zero modes of the D1-D5 strings leads to
a fermionic zero form field αi living on the worldvolume of the D-instanton. αi transforms in the
fundamental representation of the Gl(n,C) gauge group coming from the Chan-Paton factors. The
D5-D1 strings are described by a fermion βi transforming in the antifundamental representation.
The kinetic operator for the topological strings is the BRST operator Q, which acts as ∂̄ on the low
energy modes. So the effective action of the D1-D5 strings is

S =
Z

C
β(∂̄+A)α, (5.1)

where C is the holomorphic curve wrapped by the D-instanton. From this we read off the vertex
operator for an open string with wavefunction φ = AĪdZ Ī

V =
Z

C
J φ, (5.2)

where Ji
j = βiα jdz is a holomorphic current made from the free fermions α j,βi. These currents

generate a current algebra on the worldvolume of the D-instanton.
To compute a scattering amplitude, we evaluate the correlation function

A =
Z

dM 〈V1V2 . . .Vn〉 =
Z

dM
〈

Z

C
J1φ1 . . .

Z

C
Jnφn

〉

. (5.3)

We can think of this as integrating out the fermions α,β living on the D-instanton. Hence, the
generating function for scattering amplitudes is simply the integral of Dirac operator over moduli
space of D-instantons

Z

dM det(∂̄+A). (5.4)

Here, dM is the holomorphic measure on the moduli space of holomorphic curves of genus zero
and degree d. In topological B-model, the action is holomorphic function of the fields and all path
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integrals are contour integral. Hence, the integral is actually over a middle-dimensional Lagrangian
cycle in the moduli space. This integral is a higher dimensional generalization of the familiar
contour integral from complex analysis.

The correlator of the currents on D1-instanton4

〈J1(z1)J2(z2) . . .Jn(zn)〉 =
Tr(T1T2 . . .Tn)dz1dz2 . . .dzn

(z1 − z2)(z2 − z3) . . .(zn − z1)
+ permutations (5.5)

follows from the free fermion correlator on a sphere

αi(z)β j(z
′) ∼ δi

j

z− z′
. (5.6)

Scattering Wavefunctions
We would like to compute the scattering amplitudes of plane waves φ(x) = exp(i p · x) =

exp(iπaπ̃ȧxaȧ). These are wavefunctions of external particles with definite momentum paȧ = πaπ̃ȧ.

The twistor wavefunctions corresponding to plane waves are

φ(λ,µ,ψ) = δ̄(〈λ,π〉)exp(i[π̃,µ])g(ψ), (5.7)

where g(ψ) encodes the dependence on fermionic coordinates. For a positive helicity gluon g(ψ) =

1 and for a negative helicity gluon g(ψ) = ψ1ψ2ψ3ψ4. Here, we have introduced the holomorphic
delta function

δ̄( f ) = ∂̄ f̄ δ2( f ), (5.8)

which is a closed (0,1) form. We normalize it so that for any function f (z), we have
Z

dz δ̄(z−a) f (z) = f (a). (5.9)

The idea of (5.7) is that the delta function δ(〈λ,π〉) sets λa equal to πa. The Fourier transform
of the exponential exp(i[π̃,µ]) back into Minkowski space gives another delta function that sets λ̃ȧ

equal to π̃ȧ. The twistor string computation with these wavefunctions gives directly momentum
space scattering amplitudes.

Actually, the wavefunctions should be modified slightly so that they are invariant under the
scaling of the homogeneous coordinates of CP

3|4. From the basic properties of delta functions, it
follows that δ̄(〈λ,π〉) is homogeneous of degree −1 in both λ and π. Hence, for positive helicity
gluons, the wavefunction is actually

φ+(λ,µ) = δ̄(〈λ,π〉)(λ/π)exp
(

i[π̃,µ](π/λ)
)

. (5.10)

Here, λ/π is a well defined holomorphic function, since λ is a multiple of π on the support of the
delta function. The power of (λ/π) was chosen, so that the wavefunction is homogeneous of degree
zero in overall scaling of λ,µ,ψ. Under the scaling

(π, π̃) → (tπ, t−1π̃), (5.11)
4Here we write the single trace contribution to the correlator that reproduces the gauge theory scattering amplitude.

As discussed in section 6, the multitrace contributions correspond to gluon scattering processes with exchange of internal
conformal supergravity states.
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the wavefunction is homogeneous of degree −2 as expected for a positive helicity gluon (2.28).
For negative helicity gluon, the wavefunction is

φ−(λ,µ) = δ̄(〈λ,π〉)(π/λ)3 exp
(

i[π̃,µ](π/λ)
)

ψ1ψ2ψ3ψ4. (5.12)

Under the scaling (5.11), the wavefunction is homogeneous of degree +2 as expected. For wave-
functions of particles with helicity h, there are similar formulas with 2−2h factors of ψ.

MHV Amplitudes
We saw in section 3.3 that MHV amplitudes, after Fourier transform into twistor space, lo-

calize on genus zero degree one curve C, that is, a linearly embedded copy of CP
1. Here we will

evaluate the degree one instanton contribution and confirm that it gives the MHV amplitude.
Consider the moduli space of such curves. Each curve C can be described by the equations

µȧ = xaȧλa ψA = θAaλa, (5.13)

where λa are the homogeneous coordinates and xaȧ and θAa are the moduli of C. The holomorphic
measure on the moduli space is

dM = d4xd8θ. (5.14)

Hence, the moduli space has 4 bosonic and 8 fermionic dimensions.
In terms of the homogeneous coordinate λa the current correlator (5.5) becomes

〈J1(π1)J2(π2) . . .Jn(πn)〉 =
∏i〈λi,dλi〉

〈λ1,λ2〉〈λ2,λ3〉 . . .〈λn,λ1〉
, (5.15)

which we found by setting zi = λ2
i /λ1

i . We stripped away the color factors and kept only the
contribution of the term with 1,2, . . . ,n cyclic order. We multiply this with the wavefunctions
ψi(λ,µ,ψ) = δ̄(〈λ,πi〉)exp(i[µ, π̃i])gi(ψ) and integrate over the positions λi, λ̃i of the vertex oper-
ators. We perform the integral over the positions of the vertex operators using the formula

Z

CP
1
〈λ,dλ〉 δ̄(〈λ,π〉) f (λ) = f (π), (5.16)

where f (λ) is a homogeneous function of λa of degree −1. This is the homogeneous version of
definition of holomorphic delta function

Z

C

dz δ̄(z−b) f (z) = f (b). (5.17)

Hence, each wavefunction contributes a factor of
Z

C
〈λ,dλ〉φi = exp(i[π̃i,µi])gi(ψi), (5.18)

where µȧ
i = xaȧλia,ψA

i = θaAλia and the delta function sets λa
i = πa

i in the correlation function. So
the amplitude becomes

A =
1

∏k〈πk,πk+1〉

Z

d4xd8θ exp
(

i∑
k

[π̃k,µk]
)

∏
k

gk(ψk). (5.19)
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The fermionic part of the wavefunctions is gi = 1 for the positive helicity gluons and gi =

ψ1
i ψ2

i ψ3
i ψ4

i for the negative helicity gluons. Since we are integrating over eight fermionic moduli
d8θ, we get nonzero contribution to amplitudes with exactly two negative helicities r−,s−. Setting
ψA = θAaπa, the integral over fermionic dimensions of the moduli space gives the numerator of the
MHV amplitude

Z

d8θ
4

∏
A=1

ψA
r

4

∏
B=1

ψB
s = 〈r,s〉4. (5.20)

Setting µȧ
i = xaȧπia, i = 1, . . . ,n, the integral over bosonic moduli gives the delta function of mo-

mentum conservation
Z

d4xexp
(

ixaȧ ∑
i

πa
i π̃ȧ

i

)

= δ4(
n

∑
i=1

πa
i π̃ȧ

i ). (5.21)

Collecting the various pieces, we get the familiar MHV amplitude

A(r−,s−) =
〈r,s〉4

∏n
i=1〈i, i+1〉δ4(

n

∑
i=1

πiπ̃i). (5.22)

5.2 Higher Degree Instantons

Instanton Measure
Here we will construct the measure on the moduli space of genus zero degree d curves. Such

curves can be described as degree d maps from an abstract CP
1 with homogeneous coordinates

(u,v)

ZI = PI(u,v)
ψA = χA(u,v). (5.23)

Here PI,χA are homogeneous polynomials of degree d in u,v. The space of homogeneous polyno-
mials of degree d is a linear space of dimension d +1, spanned by ud ,ud−1v, . . . ,vd. Picking a basis
bα(u,v),α = 1, . . . ,d +1, we write

PI = ∑
α

PI
α bα

ψA = ∑
α

χA
α bα. (5.24)

A natural measure is

dM0 =
d+1

∏
α=1

4

∏
A,I=1

dPI
α dχA

α. (5.25)

This measure is invariant under a general Gl(d + 1,C) transformation of the basis bα. Since the
number of bosonic and fermionic coordinates is the same, the Jacobians cancel between fermionic
and bosonic parts of the measure. The description (5.23) is redundant, we need to divide by the
C
∗ action that rescales PI and χA by a common factor. This reduces the space of curves from

C
4d+4|4d+4 to CP

4d+3|4d+4. The curve C also stays invariant under an Sl(2,C) transformation on
(u,v) so the actual moduli space of genus zero degree d curves is

M = CP
4d+3|4d+4/Sl(2,C). (5.26)
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As dM0 is Gl(2,C) invariant, it descends to a holomorphic measure

dM =
dM0

Gl(2,C)
. (5.27)

on M . Hence, M is a Calabi-Yau supermanifold of dimension (4d|4d +4).

We can now understand why amplitudes with different helicities come from holomorphic
curves of different degrees. Integrating over the moduli space, the measure absorbs 4d +4 fermion
zero modes. These come from the fermionic factors g(ψ) in the wavefunctions of the gluons
(5.7). A positive helicity gluon does not contribute any zero modes while a negative helicity gluon
g−(ψ) = ψ1ψ2ψ3ψ4 gives 4 zero modes. Hence, instantons of degree d contribute to amplitudes
with d +1 negative helicity gluons.

Alternatively, we can get this from counting the S charge anomaly. Wavefunctions of particles
with different helicities violate S by different amount. The positive helicity gluons do not violate S
while the negative helicity gluons violate S by −4 units. So, the amplitudes with p positive helicity
gluons and q negative helicity gluons violates the S charge by −4q units.

In the twistor string, there is a source of violation of S from the instanton measure. Since the S
charge of Z and ψ is 0 and 1 respectively, the charges of the coefficients PI

α,χA
α are 0,1. Hence, the

differentials dPI
α,dχA

α have charges 0,−1 and the S charge of the (4d|4d +4) dimensional measure
dM is −4d −4.

So an instanton can contribute to an amplitude with q negative helicity gluons if and only if

d = q−1. (5.28)

This is the familiar formula discussed at in subsection 3.3. For l loop amplitudes, this relation
generalizes to d = q−1+ l.

Evaluating the Instanton Contribution
Here we consider the connected instanton contribution along the lines of the calculation of the

MHV amplitude. The amplitude is [64, 63, 70]

A =
Z

dMd ∏
i

Z

C

〈ui,dui〉
∏k〈uk,uk+1〉

δ̄(〈λ(ui),πi〉)exp(i[µ(ui), π̃i])gi(ψi). (5.29)

Here dMd is the measure on the moduli space of genus zero degree d curves. Next comes the
correlator of currents on the worldvolume of the D1-instanton and the wavefunctions in which we
use the parameterization λa

i (ui) = Pa(ui),µȧ(ui) = Pȧ(ui).

This is not really an integral. The integral over the 2d + 2 parameters Pȧ
α gives 2d + 2 delta

functions because Pȧ appear only in the exponential exp
(

∑i P(ui)ȧπ̃ȧ
i

)

. Hence, we are left with an
integral over 4d− (2d +2)+2n = 2d +2n−2 bosonic variables. Here the 2n integrals come from
the integration over the positions of the vertex operators. Now there are 2n delta functions from the
wavefunctions since each holomorphic delta function is really a product of two real delta functions
δ̄(z) = dz̄ δ2(z), and 2d + 2 delta functions from the integral over the exponentials, which gives a
total of 2d +2n+2. There are four more delta functions than integration variables. The four extra
delta functions impose momentum conservation. Hence, the delta functions localize the integral to
a sum of contributions from a finite number of points on the moduli space.
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Figure 3: An amplitude with tree negative helicity gluons has contribution from two configurations: (a)
Connected d = 2 instanton. (b) Two disjoint d = 1 instantons. The dashed line represents an open string
connecting the instantons.

Parity Invariance

In the helicity formalism, the parity symmetry of Yang-Mills scattering amplitudes is apparent.
The parity changes the signs of the helicities of the gluons. The parity conjugate amplitude can be
obtained by simply exchanging λi’s with λ̃i’s.

To go to twistor space, one Fourier transforms with respect to λ̃i, which breaks the symmetry
between λ and λ̃. Indeed, the result (5.29) for the scattering amplitude treats λ and λ̃ asymmet-
rically. An amplitude with p positive helicities and q negative helicities has contribution from
instantons of degree q−1, while the parity conjugate amplitude with q gluons of positive helicity
and p gluons of negative helicity has contribution from instantons of degree p− 1. To show that
these two are related by an exchange of λi and λ̃i requires some amount of work. We refer the
interested reader to the original literature [64, 63, 70, 17].

Localization on the Moduli Space

Recall that a tree level amplitude with q negative helicity gluons and arbitrary number of pos-
itive helicity gluons receives contribution from instantons wrapping holomorphic curves of degree
d = q− 1. The degree d instanton can consist of several disjoint lower degree instantons whose
degrees add up to d. For disconnected scattering amplitudes the instantons are connected by open
strings. A priory, one expects that the amplitude receives contributions from all possible instanton
configurations with total degree q− 1. So for example an amplitude with three negative helicity
gluons has contribution from a connected d = 2 instanton and a contribution from two disjoint
d = 1 instantons, fig. 3.

What one actually finds is that the connected and disconnected instanton contributions repro-
duce the whole amplitude separately. For example, in the case of amplitude with three negative
helicity gluons, it seems that there are two different ways to compute the same amplitude. One
can either evaluate it from the connected d = 2 instantons [64, 63], see fig. 3(a). Alternatively,
the amplitude comes from evaluating the contribution of the two disjoint d = 1 instantons [32], fig.
3(b).

We can explain the equality of various instanton contributions roughly as follows [39]. Con-
sider the connected contribution. The amplitude is expressed as a ‘contour’ integral over a middle-
dimensional Lagrangian cycle in the moduli space of degree two curves . The integrand comes
from the correlation function on the worldvolume of the D-instanton and from the measure on the
moduli space. It has poles in the region of the moduli space, where the instanton degenerates to
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xy=a x=0, y=0(a) (b)

Figure 4: Localization of the connected instanton contribution to next to MHV amplitude; (a) the integral
over the moduli space of connected degree two curves, localizes to an integral over the degenerate curves of
(b), that is intersecting complex lines. In the figure, we draw the real section of the curves.

two intersecting instantons of lower degrees d1 + d2 = d , fig. 4. Picking a contour that encircles
the pole, the integral localizes to an integral over the moduli space M ′ of the intersecting lower
degree curves.

Similarly, the disconnected contribution has a pole when the two ends of the propagator coin-
cide. This comes from the pole of the open string propagator

∂̄G = δ̄3(Z′I −ZI)δ4(ψ′A −ψA). (5.30)

Hence, the integral over disjoint instantons also localizes on the moduli space of intersecting in-
stantons. It can be shown that the localized integrals coming from either connected or disconnected
instanton configurations agree [39] which explains why the connected and disconnected instanton
calculations give the entire scattering amplitude separately.

Towards MHV Diagrams

Starting with a higher degree instanton contribution, successive localization reduces the inte-
gral to the moduli space of intersecting degree one curves. As we will review below, this integral
can be evaluated leading to a combinatorial prescription for the scattering amplitudes [32]. Indeed,
degree one instantons give MHV amplitudes, so the localization of the moduli integral leads to a
diagrammatic construction based on a suitable generalization of the MHV amplitudes.

5.3 MHV Diagrams

In this subsection, we start with a motivation of the MHV diagrams construction of amplitudes
from basic properties of twistor correspondence. We then go on to discuss simple examples and
extensions to loop amplitudes. In the next subsection, we give a heuristic derivation of the MHV
rules from twistor string theory.

Recall that MHV scattering amplitudes are supported on CP
1’s in twistor space. Each such

CP
1 can be associated to a point xaȧ in Minkowski space5

µȧ + xaȧλa = 0. (5.31)
5We are being slightly imprecise here. The space of CP

1’s is actually a copy of the complexified Minkowski space
C

4. The Minkowski space R
3|1 corresponds to CP

1’s that lie entirely in the ’null twistor space’, defined by vanishing
of the pseudo-hermitian norm Q(λ,µ) = i(λaµ̄a − λ̄ȧµȧ). Indeed, for a CP

1 corresponding to point a point in Minkowski
space xaȧ is a hermitian matrix, hence it follows from (5.31) that Q vanishes.
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(a) (b)

Figure 5: Two representations of a degree three MHV diagram. (a) In Minkowski space, the MHV vertices
are represented by points. (b) In twistor space, each MHV vertex corresponds to a line. The three lines
pairwise intersect.

So, in a sense, we can think of MHV amplitudes as local interaction vertices [32]. To take this
analogy further, we can try to build more complicated amplitudes from Feynman diagrams with
vertices that are suitable off-shell continuations of the MHV amplitudes, fig. 5. MHV amplitudes
are functions of holomorphic spinors λi only. Hence, to use them as vertices in Feynman diagrams,
we need to define λ for internal off-shell momenta p2 6= 0.

To motivate the off-shell continuation, notice that for on-shell momentum paȧ = λaλ̃ȧ, we can
extract the holomorphic spinors λ from the momentum p by picking arbitrary anti-holomorphic
spinor ηȧ and contracting it with paȧ. This gives λa up to a scalar factor

λa =
paȧηȧ

[λ̃,η]
. (5.32)

For off-shell momenta, this strategy almost works except for the factor [λ̃,η] in the denominator
which depends on the undefined spinor λ̃. Fortunately, [λ̃,η] scales out of Feynman diagrams, so
we take as our definition

λa = paȧηȧ. (5.33)

This is clearly well-defined for off-shell momentum. We complete the definition of the MHV rules,
by taking 1/k2 for the propagator connecting the MHV vertices.

Consider an MHV diagram with v vertices. Each vertex gives two negative helicity gluons.
To make a connected tree level graph, the vertices are connected with v− 1 propagators. The
propagators absorb v−1 negative helicities, leaving v+1 negative helicity external gluons. Hence,
to find all MHV graphs contributing to a given amplitude, draw all possible tree graphs of v vertices
and v− 1 links assigning opposite helicities to the two ends of internal lines. The external gluons
are distributed among the vertices while preserving cyclic ordering. MHV graphs are those for
which each vertex has two negative helicity gluons emanating from it.

For further work on MHV vertices construction of tree-level gluon amplitudes, see [11, 53, 71,
73, 24]. MHV vertices have many generalizations; in particular, to amplitudes with fermions and
scalars [42, 43, 52, 72, 66], with Higgses [41, 5] and with electroweak vector-boson currents [20].
For an attempt to generalize MHV vertices to gravity, see [44, 58, 2].

Examples
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4−

P
P

−

+
+

−

4− 3− 2−3−

1+ 2− 1+

Figure 6: MHV diagrams contributing to the +−−− amplitude, which is expected to vanish.

Here we discuss concrete amplitudes to illustrate the method. Consider first the +−−− gluon
amplitude. This amplitude vanishes in Yang-Mills theory. It has contribution from two diagrams,
see fig. 6.

The first of the two diagrams gives

〈2,λ〉4

〈1,2〉〈2,λ〉〈λ,1〉
1
p2

〈3,4〉4

〈3,4〉〈4,λ〉〈λ,3〉 , (5.34)

where we associate to the internal momentum p = p1 + p2 = −p3 − p4 the holomorphic spinor

λa = paȧηȧ = (p1 + p2)
aȧηȧ. (5.35)

The second diagram can be obtained from the first by exchanging particles 2 and 4

〈λ′,4〉4

〈1,λ′〉〈λ′,4〉〈4,1〉
1

p′2
〈2,3〉4

〈2,3〉〈3,λ′〉〈λ′,2〉 , (5.36)

where λ′a = (p1 + p4)
aȧηȧ. Denoting φi = λȧ

i ηȧ, the first and second diagrams give respectively

− φ3
1

φ2φ3φ4

〈34〉
[21]

− φ3
1

φ2φ3φ4

〈32〉
[41]

. (5.37)

The sum of these contributions vanishes, because momentum conservation implies 〈32〉[21] +

〈34〉[41] = ∑i〈3i〉[i1] = 0.

It is easy to compute more complicated amplitudes. For example, the n gluon −−−++ · · ·+
+ amplitude is a sum of 2(n− 3) MHV diagrams, which can be obtained from fig. 6 by adding
additional + helicities on the MHV vertices. The diagrams can be evaluated to give

A =
n−1

∑
i=3

〈1λ2,i〉3

〈λ2,ii+1〉〈i+1i+2〉 . . .〈n1〉
1

q2
2i

〈23〉3

〈λ2,i2〉〈34〉 . . .〈iλ2,i〉

+
n

∑
i=4

〈12〉3

〈2λ3,i〉〈λ3,ii+1〉 . . .〈n1〉
1

q2
3i

〈λ3,i3〉3

〈3,4〉 . . .〈i−1i〉〈iλ3,i〉,
(5.38)

where qi j = pi + pi+1 + · · ·+ p j and the corresponding spinor λa
i, j is defined in the usual way

λa
i, j = qaȧ

i j ηȧ.

Loop Amplitudes
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i
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+ −

−
−

+ p

L
p−p

Figure 7: Schematic representation of a hypothetical twistor string computation of one-loop MHV am-
plitude. The picture shows a diagram in which the negative helicity gluons i−, j− are on the same MHV
vertex.

Similarly, one can compute loop amplitudes using MHV diagrams. This has been carried out
for the one loop MHV amplitude in N = 4 [25] and N = 1 [62, 9] Yang-Mills theory, in agreement
with the known answers.

The expression for an MHV diagram contributing to the one-loop MHV amplitude is just
what one would expect for a one-loop Feynman diagram with MHV vertices, fig. 7. There are
two MHV vertices, each coming with two negative helicity gluons. The vertices are connected
with two Feynman propagators that absorb two negative helicities, leaving two negative helicity
external gluons

A loop = ∑
D,h

Z

d4−2ε p
(2π)4 AL(λk,λp,λp−pL)

1
p2(p− pL)2 AR(λk,λp,λp−pL). (5.39)

The off-shell spinors entering the MHV amplitudes AL,AR are determined in terms of the momenta
of the internal lines

λa
p = paȧηȧ, λa

p−pL
= (p− pL)

aȧηȧ, (5.40)

which is the same prescription as for tree level MHV diagrams. The sum in (8.20) is over partitions
D of the gluons among the two MHV diagrams that preserve the cyclic order and over the helicities
of the internal particles6.

This calculation makes the twistor structure of one-loop MHV amplitudes manifest. The two
MHV vertices are supported on lines in twistor space, so the amplitude is a sum of contributions,
each of which is supported on a disjoint union two lines. In a hypothetical twistor string theory
computation of the amplitude, these two lines are connected by open string propagators, see fig.
8. This pictures agrees with studies of the twistor structure using differential equations [33], after
taking into account the holomorphic anomaly of the differential equations [34, 12].

Finally, we make a few remarks about the nonsupersymmetric one-loop MHV amplitudes.
The N = 0 MHV amplitudes are sums of cut-constructible terms and rational terms. The cut-
constructible terms are correctly reproduced from MHV diagrams [8]. The rational terms are single
valued functions of the spinors, hence they are free of cuts in four dimensions. Their twistor struc-
ture suggests that they receive contribution from diagrams in which, alongside with MHV vertices,
there are new one-loop vertices coming from one-loop all-plus helicity amplitudes [33]. However,

6Similarly, the double-trace contribution to one-loop MHV amplitudes comes from Feynman diagrams with double-
trace MHV vertices [48, 49].
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Figure 8: Twistor space structure of the one-loop MHV amplitude. The two MHV vertices are represented
by lines. In a hypothetical twistor string computation of the amplitude, the lines are connected by two twistor
propagators to make a loop.

a suitable off-shell continuation of the one-loop all-plus amplitude has not been found yet. There
has been recent progress in computing the rational part of some one-loop QCD amplitudes using a
generalization [23] of the tree level recursion relations reviewed in section 8.

5.4 Heuristic Derivation of MHV Diagrams from Twistor String Theory

Here, we will make an analysis of the disconnected twistor diagrams that contribute to tree
level amplitudes7. We will evaluate the twistor string amplitude corresponding the twistor contri-
bution of fig. 9 and show how it leads to the MHV diagrammatic rules of the last subsection.

The physical field of the open string B-model is a (0,1)-form A with kinetic operator ∂̄ coming
from the Chern-Simons action. The twistor propagator for A is a (0,2)-form on CP

3 ×CP
3 that is

a (0,1)-form on each copy of CP
3. The propagator obeys the equation

∂̄G = δ̄3(ZI
2 −ZI

1)δ
4(ψA

2 −ψA
1 ). (5.41)

Here, δ̄(z) = dz̄δ(z)δ(z̄) is the holomorphic delta function (0,1)-form.
In an axial gauge, the twistor propagator becomes

G = δ̄(λ2
2 −λ2

1)δ̄(µ1̇
2 −µ1̇

1)
1

µ2̇
2 −µ2̇

1

4

∏
A=1

(ψA
2 −ψA

1 ), (5.42)

where we set λ1
1 = λ1

2 = 1.

For simplicity, we evaluate the contribution from two degree-one instantons C1 and C2 con-
nected by twistor propagator. This configuration contributes to amplitudes with three negative
helicity gluons. The instantons Ci, i = 1,2 are described by the equations

µȧ
k = xaȧ

i λka, ψA
k = θAa

i λka i = 1,2, k = 1, . . . ,n. (5.43)

Here, xaȧ
i and θAa

i are the bosonic and fermionic moduli of Ci.
With our choice of gauge, the twistor propagator is supported on points such that λa

1 = λa
2.

Since µȧ
2 − µȧ

1 = yaȧλa, where yaȧ = xaȧ
2 − xaȧ

1 , the condition µ1̇
2 − µ1̇

1 = 0 implies λa = ya1̇. Hence,
the bosonic part of the propagator gives 1/(µ2̇

2 −µ2̇
1) = 1/y2.

7For an attempt to derive MHV rules from N = 4 superspace constraints, see [1].
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C1 C2

Figure 9: Twistor string contribution to an amplitude with three negative helicity external gluons. Two
disconnected degree one instantons are connected by an open string.

The correlators of the gluon vertex operators on C1 and C2 and the integral over θAa
i give two

MHV amplitudes AL and AR as explained in the d = 1 computation. So we are left with the integral
Z

d4x1d4x2AL
1

(x2 − x1)2 AR ∏
i∈L

exp(ix1 · pi)∏
j∈R

exp(ix2 · p j), (5.44)

where the integral is over a suitably chosen 4× 4 real dimensional ‘contour’ in the moduli space
C

4 ×C
4 of two degree one curves. We rewrite the exponential as

exp(iy ·P) ∏
j∈L,R

exp(ix · pi), (5.45)

where x ≡ x1 and P = ∑i∈R pi is momentum of the off-shell line connecting the two vertices. The
integral

Z

d4x ∏
i∈L,R

exp(ix · pi) = (2π)4δ4(∑
i

pi) (5.46)

gives the delta function of momentum conservation. We are left with

A =
Z

d4y
1
y2 exp(iy ·P)ALAR. (5.47)

The integrand has a pole at y2 = 0, which is the condition for the curves C1 and C2 to intersect. The
space y2 = 0 is the familiar conifold. It is a cone over CP

1 ×CP
1 so we parameterize it as

yaȧ = tλaλ̃ȧ. (5.48)

Here λa ∈ O(1,0), λ̃ȧ ∈ O(0,1), hence t ∈ O(−1,−1) so that (5.48) is well-defined. We choose a
contour that picks the residue at y2 = 0. The residue is the volume form on the conifold

Res d4y
y2 = tdt〈λ,dλ〉[λ̃,dλ̃]. (5.49)

Taking the residue, the integral becomes

I =
Z

tdt〈λ,dλ〉[λ̃,dλ̃]exp(itPaȧλaλ̃ȧ)ALAR, (5.50)

where the MHV vertices depend on the holomorphic spinor λ only. We pick the contour t ∈ (−∞,∞)

and λ̃ = λ̄, that is, we integrate over the real light-cone. For t ∈ (0,±∞) we regulate the integral
with the prescription P = (p0 ± iε,~p), so

Z ∞

−∞
tdt exp(itPaȧλaλ̃ȧ) = − 2

(Paȧλaλ̃ȧ)2
. (5.51)
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Hence we have
I =

Z

〈λ,dλ〉[λ̃,dλ̃]
1

(Pλλ̃)2
ALAR(λ). (5.52)

To reduce the integral (5.52) to a sum over MHV diagrams, we use the identity

[λ̃,dλ̃]

(Pλλ̃)2
= − 1

Pλη
∂̄

(

[λ̃,η]

Pλλ̃

)

, (5.53)

where ηȧ is an arbitrary positive helicity spinor to write the integral as

I =
Z

〈λ,dλ〉 ALAR

(Pλη)
∂̄

(

[λ̃,η]

(Pλλ̃)

)

. (5.54)

Now we can integrate by parts. The ∂̄ operator acting on the holomorphic function on the left gives
zero except for contributions coming from poles of the holomorphic function, ∂̄(1/z) = δ̄(z). These
evaluate to a sum over residues

I = ∑Res
(ALAR

Pλη

)

[λ̃,η]

Pλλ̃
. (5.55)

The residues of 1/(Pλη) are at
λa = Paȧηȧ. (5.56)

Substituting this back into (5.55), Pλλ̃ evaluates to P2[λ̃,η], so we have

I =
1

P2 ALAR(λ = Pη). (5.57)

But this is precisely the contribution from an MHV diagram. Summing over all cyclicly ordered
partitions of the gluons among the two instantons gives the sum over MHV diagrams contributing
to the scattering amplitude.

There are additional additional poles in (5.55) that come from the MHV vertices ALAR

1
∏4

α=1〈λα,λ〉
, (5.58)

where α runs over the four gluons adjacent to the twistor line. The poles are located at λ = λα,

which is the condition of the twistor line to meet the gluon vertex operator. Consider the two
diagrams, fig. 10 in which the function ALAR has a pole at λ = λα. The graphs differ by whether the
gluon α is on the left vertex just after the propagator or on the right vertex just before the propagaor.
The reversed order of λ and λα in the two diagrams changes the sign of the residue. The rest of
the residue (5.55) stays the same after taking λ = λα. The off-shell momenta of the two diagrams
differ by δP = λαλ̃α, so the diagrams have the same value of the denominators (Pλαλ̃α)(Pλαη).

Hence, all poles at λ = λα get cancelled among pairs of diagrams.
This derivation clearly generalizes to several disconnected degree one instantons that con-

tribute to a general tree level amplitude. An amplitude with d + 1 negative helicity gluons gets
contributions from diagrams with d disconnected degree one instantons. The evaluation of the
twistor contributions leads to MHV diagrams with d MHV vertices.
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α

α

P

P

Figure 10: The graphs contributing to the pole at λ = λα. The reversed order of α and the internal line in
the two graphs, changes the sign of the residue of the pole.

Let us remark that the integral (5.52) could be taken as the starting point in the study of
MHV diagrams. Since (5.51) is clearly Lorentz invariant,8 the MHV diagram construction must be
Lorentz invariant as well. Although separate MHV diagrams depend on the auxiliary spinor η, the
sum of all diagrams contributing to a given amplitude is independent of the auxiliary spinor ηȧ.

Loops in Twistor Space?

We have just seen that the disconnected instanton contribution leads to tree level MHV dia-
grams. However, the MHV diagram construction seems to work for loop amplitudes as well, as
discussed in previous subsection. Hence, one would like to generalize the twistor string derivation
to higher genus instanton configurations, which contribute to loop amplitudes in Yang-Mills theory.
For example, the one-loop MHV amplitude should come from a configuration of two degree one
instantons connected by two twistor propagators to make a loop, fig. 8. An attempt to evaluate
this contribution runs into difficulties. The two twistor propagators are both inserted at the same
point λa = yaȧηȧ on the D-instanton worldvolume making the answer ill-defined. Some of these
difficulties are presumably related to the closed string sector of the twistor string theory, that we
will now review.

6. Closed Strings

The closed strings of the topological B-model on supertwistor space are related by twistor
transform to N = 4 conformal supergravity [16]. The conformal group is the group of linear trans-
formations of the twistor space, so the twistor string is manifestly conformally invariant. Hence it
necessarily leads to a conformal theory of gravity.

Let us see how the closed strings are related to the conformal supergravity fields. The most
obvious closed string field is the deformation of complex structure of CP

′3|4, the ′ means that we
throw away the set λa = 0. In this and the following section, we parameterize CP

3|4 with homoge-
neous coordinates ZI, I = 1, . . . ,8. Recall that the complex structure is conventionally defined in
terms of the tensor field jA = JA

BdZB obeying J2 = −1. The indices A,B can be both holomorphic
or antiholomorphic. In local holomorphic coordinates J I

J = i and J Ī
J̄ = −i. The first order pertur-

8The Lorentz invariance requires some elaboration, because the choice of contour λ̄ = λ̃, breaks the complexi-
fied Lorentz group Sl(2,C)× Sl(2,C) to the diagonal Sl(2,C), the real Minkowski group. It can be argued from the
holomorphic properties of the integral (5.52), that it is invariant under the full Sl(2,C)×Sl(2,C) [32].
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bations of the complex structure are described by a field J I
J̄ and its complex conjugate J Ī

J . From
JI

J̄ we form the vector valued (0,1) form jI = JI
J̄dZ J̄ with equations of motion

∂̄ jI = 0 (6.1)

that express the integrability condition on the deformed complex structure. jI is volume preserving
∂IJI

J̄ = 0, since the holomorphic volume Ω is part of the definition of the B-model9, jI is subject to
the gauge symmetry jI → jI + ε∂̄κI , where κI is a volume preserving vector field.

According to twistor transform [61], volume preserving deformations of complex structure of
twistor space are related to anti-selfdual perturbations of the spacetime. Anti-selfdual perturbations
correspond to positive helicity conformal supergravitons. The N = 4 positive helicity supermulti-
plet contains fields going from the helicity +2 graviton to a complex scalar C̄.

The negative helicity graviton is part of a separate N = 4 superfield. It comes from an RR two
form field

b = BĪJ dZ̄ Ī ∧dZJ (6.2)

that couples to the D1-branes of the B-model via
Z

C
b, (6.3)

where C is the worldvolume of the D1-brane. The equations of motion of b are

∂̄b = 0 (6.4)

and b is subject to the gauge invariance b → b + ∂̄λ. In order to relate b to the fields of the
Berkovits’s open twistor string that we discuss in next section, one needs to assume that b is also
invariant under the gauge transformation BĪJ → BĪJ +∂J χĪ.

6.1 Conformal Supergravity

Conformal supergravity in four dimensions has action

S ∼
Z

d4x
√−gWabcdW abcd , (6.5)

where W is the Weyl tensor. This theory is generally considered unphysical. Expanding the action
around flat space gµν = ηµν + hµν leads to a fourth order kinetic operator S ∼ R

d4xh∂4h for the
fluctuations of the metric, and thus to lack of unitarity.

We can see a sign of the supergravity already in the tree level MHV amplitude calculation of
section 5.1. There we found that the single trace terms agree with the tree level MHV amplitude
in gauge theory. We remarked that the current algebra correlators give additional multi-trace con-
tributions. These come from an exchange of an internal conformal supergravity state, which is a
singlet under the gauge group. For example, the four gluon MHV amplitude has a contribution
Tr T1T2Tr T3T4 coming from an exchange of supergravity state in the 12 → 34 channel, fig. 11. In
twistor string theory, this comes from the double trace contribution of the current algebra on the
worldvolume of the D-instanton

Z

M
dM 〈V1V2〉〈V3V4〉 . (6.6)
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41/k

2 4

31

Figure 11: A double trace TrT1T2TrT3T4 contribution to tree level four gluon scattering amplitude coming
from exchange of conformal supergravity particle, which is represented by a dashed line.

At tree level, it is possible to recover the pure gauge theory scattering amplitudes by keeping
the single-trace terms. However, at the loop level, the diagrams that include conformal supergrav-
ity particles can generate single-trace interactions. Hence the presence of conformal supergravity
coming from the closed strings puts an obstruction to computation of Yang-Mills loop amplitudes
in the present formulation of twistor string theory.

In twistor string theory, the conformal supergravitons have the same coupling as gauge bosons,
so it is not possible to remove the conformal supergravity states by going to weak coupling. Since,
Yang-Mills theory is consistent without conformal supergravity, it is likely that there is a version
of the twistor string theory that does not contain the conformal supergravity states.

7. Berkovits’s Open Twistor String

Here we will describe the open string version of the twistor string [15]. In this string theory,
both Yang-Mills and conformal supergravity states come from open string vertex operators.

7.1 The Spectrum

The action of the open string theory is

S =
Z

d2z
(

YI∇̄z̄Z
I + ȲI∇zZ̄

I +SC
)

. (7.1)

For Euclidean signature of the worldsheet, Z I = (λa, λ̃ȧ,φA), a, ȧ = 1,2, A = 1, . . . ,4, I = 1, . . . ,8,

are homogeneous coordinates on CP
3|4 and Z̄I are their complex conjugates. YI and ȲI are conju-

gates to ZI and Z̄I. Notice that ZI, I = 5, . . . ,8 were denoted as φA,A = 1, . . . ,4 in previous sections.
Before twisting, Z and Z̄ have conformal weight zero and Y and Ȳ have conformal weight one. The
covariant derivatives are

∇z = ∂z −Az ∇z̄ = ∂̄z̄ −Az̄, (7.2)

where A is a worldsheet gauge field that gauges the Gl(1,C) symmetry Z I → tZI, YI → t−1YI . SC is
the action of a current algebra with central charge +28 which cancels −26 of the conformal ghosts
and −2 of the Gl(1,C) ghosts. The open string boundary conditions are

ZI = Z̄I, YI = ȲI jr = j̄r, (7.3)
9This extra condition is not understood from B-model perpective [16]. One can guess it from analogous condition

in the Berkovits’s open twistor string.
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where jr, r = 1, . . .dimG are the currents of the current algebra. On the boundary, Z and Y are real
and the Gl(1,C) gauge group is broken to the group Gl(1,R) of real scalings of Z,Y.

The physical open string vertex operators are described by dimension one fields that are neutral
under Gl(1) and primary with respect to Virasoro and Gl(1) generators

T = YI∂ZI +TC, J = YIZ
I. (7.4)

The fields corresponding to Yang-Mills states are

Vφ = jrφr(Z) (7.5)

where φr(Z) is a dimension zero Gl(1,R) neutral function of Z. That is, φ is any function on RP
3|4.

Vφ has clearly dimension one. φ is related by twistor transform to gauge fields on spacetime with
signature ++−− .

The vertex operators describing the conformal supergravity are

Vf = YI f I(Z), Vg = ∂ZIgI(Z). (7.6)

These have dimension one, since YI and ∂ZI have dimension one. The Gl(1) invariance requires
that f I has Gl(1) charge +1 and gI has Gl(1) charge −1. The vertex operators are primary if

∂I f I = 0, ZIgI = 0. (7.7)

We identify two vertex operators that differ by null states

δVf = J−1Λ = YIZ
IΛ, δVφ = T−1χ = ∂ZI∂Iχ. (7.8)

Hence, f I and gI are subject to the gauge invariance

δ f I = ZIΛ, δgI = ∂Iχ. (7.9)

Since f I has Gl(1) charge +1, we can construct Gl(1) neutral the vector field

ϒ = f I ∂
∂ZI . (7.10)

ϒ descends to a vector field on on the real twistor space R
3|4 thanks to the gauge invariance δ f I =

ZIΛ that kills the vertical part of the vector field along the Gl(1) orbits Z I → tZI. The primary
condition ∂I f I = 0 implies that ϒ preserves the volume measure Ω ∼ Zd7Z on RP

3|4. Hence ϒ is
a volume preserving vector field on RP

3|4. Similarly, we can summarize the conditions on g by
considering the 1 form

Θ = gIdZI. (7.11)

The constraint gIZI = 0 means that Θ annihilates the vertical vector field Z I∂/∂ZI, so it descends
to a one form on RP

3|4. The gauge invariance δgI = ∂Iχ means that Θ is actually an abelian gauge
field on RP

3|4.

Comparison with B-model
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Recall that that B-model is defined on CP
′3|4. The open strings correspond to gauge fields

in Minkowski space and the closed strings correspond to conformal supergravity. On the other
hand in the open twistor string both gauge theory and conformal supergravity states come from
the open string vertex operators. The boundary of the worldsheet (and hence the vertex operators)
lives in RP

′3|4. Hence the twistor fields are related by twistor transform to fields on spacetime with
signature ++−− .

The gauge field is described in B-model by a (0,1) form A that is an element of H 1(CP
′3|4,O).

This has equations of motion ∂̄A = 0 and gauge invariance δA = ∂̄ε, where ε is a function on
CP

′3|4. In open string, the gauge field comes from a function φ on RP
′3|4. If φ is real-analytic, we

can extend it to a complex neighborhood of RP
′3|4 in CP

′3|4. Then the relation between the two
fields is [4, 16, 69]

A = φ ∂̄(θ(Im z)) =
i
2φ δ(Im z)dz̄, (7.12)

where z = λ2/λ1 and θ(x) = 1 for x ≥ 0 and 0 for x < 0.

The B-model closed string field giving deformation of complex structure jI = JI
J̄dZJ is related

to the open string volume preserving vector field ϒ = f I ∂/∂ZI as jI = f I ∂̄(θ(Im z)). Similarly,
the RR-two form b = BIJ̄ dZI ∧dZ J̄ gets related to the abelian gauge field Θ = gI dZI of the open
string by b = Θ ∂̄(θ(Im z)).

Hence, we get the open twistor string wavefunction by considering λa,µȧ real and by replacing
holomorphic delta functions δ̄(〈λ,π〉) with real delta functions

φ(λ,µ,ψ) = δ(〈λ,π〉)exp(i[π̃,µ])g(ψ). (7.13)

7.2 Tree Level Yang-Mills Amplitudes

A tree level n gluon scattering amplitude has contribution from worldsheet D of disk topology.
The gluon vertex operators are inserted along the boundary of the worldsheet. Taking the disk to be
the upper half-plane Im z ≥ 0, we insert the vertex operators at zi, Im zi = 0. Hence, the scattering
amplitude is

A = ∑
d

Z

dM 〈
Z

dz1Vφ(z1) . . .
Z

dznVφ(zn)〉, (7.14)

where the sum is over U(1) worldsheet instantons and dM is the measure.
In two dimensions, the instanton number of a Gl(1) gauge bundle is the degree of the line

bundle. Recall that the bundle O(d) of degree d homogeneous functions has degree d. Hence, on
a worldsheet with instanton number d, ZI’s are sections of O(d). But this is just the parametric
description of an algebraic curve of degree d discussed in section 5.2. While in B-model we
summed over D-instantons, in the open twistor string we are summing over worldsheet instantons.
Both description lead to the same curves in twistor space. The only difference is that for B-model
we consider holomorphic curves, while here we are interested in real algebraic curves.

The discussion of the real case is entirely analogous to the holomorphic case. Each Z I has
d + 1 real zero modes that are local coordinates on the moduli space M = RP

4d+3|4d+4/Sl(2,R).

The measure is just the holomorphic measure (5.27) restricted to real curves. The moduli space
of degree d instantons has 4d + 4 fermionic dimensions. Since negative helicity gluon gives 4
zero modes and positive helicity gluon gives no zero modes, a degree d instanton contributes to
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amplitudes with d + 1 negative helicity gluons. Parameterizing the disk using z, Imz ≥ 0, the
amplitude is the real version of (5.29)

A =
Z

dMd ∏
i

Z

D

dzi

∏k(zk − zk+1)
δ(〈λ(zi),πi〉)exp(i[µ(zi), π̃i])gi(ψi). (7.15)

In [17], a cubic open string field theory was constructed for the Berkovits’s twistor string theory.
Since the twistor string field theory gives the correct cubic super-Yang-Mills vertices, it provides
further support that (7.15) correctly computes tree-level Yang-Mills amplitudes.

8. Recent Results in Perturbative Yang-Mills

In this part of the lecture we shift gears and concentrate on new techniques for the calculation
of scattering amplitudes in gauge theory. We will discuss two main results: BCFW recursion
relations [28, 29] for tree amplitudes of gluons and quadruple cuts of N = 4 one-loop amplitudes
of gluons [27].

8.1 BCFW Recursion Relations

We have seen how tree-level amplitudes of gluons can be computed in a simple and systematic
manner by using MHV diagrams. However, from the study of infrared divergencies of one-loop
N = 4 amplitudes of gluons, surprisingly simple and compact forms for many tree amplitudes
were found in [18, 65]. These miraculously simple formulas were given an explanation when a set
of recursion relations for amplitudes of gluons was conjectured in [28]. The Britto-Cachazo-Feng-
Witten (BCFW) recursion relations were later proven and extended in [29]. Here we review the
BCFW proof of the general set of recursion relations. The reason we choose to spend more time in
the proof than in recursion relation itself is that the proof is constructive and the same method can
and has been applied to many other problems from field theory to perhaps string theory.

Consider a tree-level amplitude A(1,2, . . . ,n− 1,n) of n cyclically ordered gluons, with any
specified helicities. Denote the momentum of the ith gluon by pi and the corresponding spinors by
λi and λ̃i. Thus, paȧ

i = λa
i λ̃ȧ

i , as usual in these lectures.
In what follows, we single out two of the gluons for special treatment. Using the cyclic sym-

metry, without any loss of generality, we can take these to be the gluons k and n. We introduce a
complex variable z, and let

pk(z) = λk(λ̃k − zλ̃n),

pn(z) = (λn + zλk)λ̃n. (8.1)

We leave the momenta of the other gluons unchanged, so ps(z) = ps for s 6= k,n. In effect, we have
made the transformation

λ̃k → λ̃k − zλ̃n, λn → λn + zλk, (8.2)

with λk and λ̃n fixed. Note that pk(z) and pn(z) are on-shell for all z, and pk(z)+ pn(z) is indepen-
dent of z. As a result, we can define the following function of a complex variable z,

A(z) = A(p1, . . . , pk−1, pk(z), pk+1, . . . , pn−1, pn(z)). (8.3)
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The right hand side is a physical, on-shell amplitude for all z. Momentum is conserved and all
momenta are on-shell.

For any z 6= 0, the deformation (8.1) does not make sense for real momenta in Minkowski
space, as it does not respect the Minkowski space reality condition λ̃ = ±λ̄. However, (8.1) makes
perfect sense for complex momenta or (if z is real) for real momenta in signature ++−−. In any
case, we think of A(z) as an auxiliary function. In the end, all answers are given in terms of spinor
inner products and are valid for any signature.

Here we assume that the helicities (hk,hn) are (−,+). The proof can be extended to helicities
(+,+), or (−,−) but we refer the reader to [29].

We claim three facts about A(z): (1) It is a rational function. (2) It only has simple poles. (3)

It vanishes for z → ∞.
These three properties of A(z) imply that it can be written as follows

A(z) = ∑
p∈{poles}

cp

z− zp
, (8.4)

where cp is the residue at a given pole and the sum is over the whole set of poles. It turns out
that, as we will see below, cp is proportional to the product of two physical amplitudes with fewer
gluons than A(z). Therefore, (8.4) provides a recursion relation for amplitudes of gluons.

Let us prove the three statements. (1) This is easy. Note that the original tree-level amplitude is
a rational function of spinor products. Since the z dependence enters only via the shift λ̃k → λ̃k−zλ̃n

and λn → λn + zλk, A(z) is clearly rational in z.
(2) By definition, A(z) is constructed out of Feynman diagrams. The only singularities A(z)

can have come from propagators. Recall that A(z) is color-ordered. This means that all propagators
are of the form 1/P2

i j where Pi j = pi + . . .+ p j. Clearly, Pi j is z independent if both k,n ∈ {i, . . . , j}
or if k,n 6∈ {i, . . . , j}. By momentum conservation it is enough to consider propagators for which
n ∈ {i, . . . , j} and k 6∈ {i, . . . , j}. Since the shift of pn is by a null vector, one has

P2
i j(z) = P2

i j(0)− z〈λk|Pi j|λ̃n], (8.5)

where for any spinors λ, λ̃ and vector p, we define 〈λ|p|λ̃] = −paȧλaλ̃ȧ. Hence, the propagator
1/Pi j(z)2 has only a single, simple pole, which is located at zi j = P2

i j/〈λk|Pi j|λ̃n].
(3) Recall that any Feynman diagram contributing to the amplitude A(z) is linear in the polar-

ization vectors εaȧ of the external gluons. Polarization vectors of gluons of negative and positive
helicity and momentum paȧ = λaλ̃ȧ can be written respectively as follows (see section 2.1 ),

ε−aȧ =
λaµ̃ȧ

[λ̃, µ̃]
, ε+

aȧ =
µaλ̃ȧ

〈µ,λ〉 , (8.6)

where µ and µ̃ are fixed reference spinors.
Only the polarization vectors of gluons k and n can depend on z. Consider the kth gluon first.

Recall that λk does not depend on z and λ̃k(z) is linear in z. Since hk = −1, it follows from (8.6)
that ε−k goes as 1/z as z → ∞. A similar argument leads to ε+

n ∼ 1/z as z → ∞.
The remaining pieces in a Feynman diagram are the propagators and vertices. It is clear that

the vanishing of A(z) as z → ∞ can only be spoiled by the momenta from the cubic vertices, since
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the quartic vertices have no momentum factors and the propagators are either constant or vanish
for z → ∞.

Let us now construct the most dangerous class of graphs and show that they vanish precisely
as 1/z. The z dependence in a tree diagram “flows" from the kth gluon to the nth gluon along a
unique path of propagators. Each such propagator contributes a factor of 1/z. If there are r such
propagators, the number of cubic vertices through which the z-dependent momentum flows is at
most r + 1. (If all vertices are cubic, then starting from the kth gluon, we find a cubic vertex and
then a propagator, and so on. The final cubic vertex is then joined to the nth gluon.) So the vertices
and propagators give a factor that grows for large z at most linearly in z.

As the product of polarization vectors vanishes as 1/z2, it follows that for this helicity config-
uration, A(z) vanishes as 1/z for z → ∞.

Now we can rewrite (8.4) more precisely as follows

A(z) = ∑
i, j

ci j

z− zi j
, (8.7)

where ci j is the residue of A(z) at the pole z = zi j. >From the above discussion, the sum over i and
j runs over all pairs such that n is in the range from i to j while k is not. At this point it is clear the
smallest number of poles is achieved when k and n are adjacent, i.e., k = n−1. This is the choice
we make in the examples below.

Finally, we have to compute the residues ci j. To get a pole at P2
i j(z) = 0, a tree diagram must

contain a propagator that divides it into a “left” part containing all external gluons not in the range
from i to j, and a “right” part containing all external gluons that are in that range. The internal line
connecting the two parts of the diagram has momentum Pi j(z), and we need to sum over the helicity
h = ± at, say, the left of this line. (The helicity at the other end is opposite.) The contribution of
such diagrams near z = zi j is ∑h Ah

L(z)A−h
R (z)/Pi j(z)2, where Ah

L(z) and A−h
R (z) are the amplitudes

on the left and the right with indicated helicities. Since the denominator Pi j(z)2 is linear in z,
to obtain the function ci j/(z− zi j) that appears in (8.7), we must simply set z equal to zi j in the
numerator. When we do this, the internal line becomes on-shell, and the numerator becomes a
product Ah

L(zi j)A−h
R (zi j) of physical, on-shell scattering amplitudes. More precisely we have,

Ah
L(zi j) = A(p j+1, . . . , pk(zi j), . . . , pi−1,P

h
i j(zi j)), A−h

R (zi j) = A(−P−h
i j (zi j), pi, . . . , pn(zi j), . . . , p j).

(8.8)
The formula (8.7) for the function A(z) therefore becomes

A(z) = ∑
i, j

∑
h

Ah
L(zi j)A−h

R (zi j)

Pi j(z)2 . (8.9)

To get the physical scattering amplitude A(1,2, . . . ,n− 1,n), we set z to zero in the denominator
without touching the numerator. Hence,

A(1,2, . . . ,n−1,n) = ∑
i, j

∑
h

Ah
L(zi j)A−h

R (zi j)

P2
i j

. (8.10)

This is the BCFW recursion relation [28, 29].
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8.1.1 Examples

Let us illustrate some of the compact formulas one can obtain using the recursion relations
(8.10).

Consider two of the six-gluon next-to-MHV amplitudes, for example, amplitudes with three
minus and three plus helicity gluons: A(1−,2−,3−,4+,5+,6+) and A(1+,2−,3+,4−,5+,6−). As
mentioned above, the recursion relations (8.10) have the smallest number of terms when k and n
are chosen to be adjacent gluons. In the first example we choose to shift p3 and p4, while in the
second we shift p2 and p3. The results are the following:

A(1−,2−,3−,4+,5+,6−) =
1

〈5|3+4|2]

(

〈1|2+3|4]3

[2 3][3 4]〈5 6〉〈6 1〉t [3]
2

+
〈3|4+5|6]3

[6 1][1 2]〈3 4〉〈4 5〉t [3]
3

)

.

(8.11)

A(1+,2−,3+,4−,5+,6−) =
[1 3]4〈4 6〉4

[1 2][2 3]〈4 5〉〈5 6〉t [3]
1 〈6|1+2|3]〈4|2+3|1]

(8.12)

+
〈2 6〉4[3 5]4

〈6 1〉〈1 2〉[3 4][4 5]t [3]
3 〈6|4+5|3]〈2|3+4|5]

(8.13)

+
[1 5]4〈2 4〉4

〈2 3〉〈3 4〉[5 6][6 1]t [3]
2 〈4|2+3|1]〈2|3+4|5]

, (8.14)

where t [r]i = pi + . . .+ pi+r−1.
It is interesting to observe that while (8.11) and (8.12) are simpler than the amplitudes com-

puted by Berends, Giele, Mangano, Parke, Xu [13, 55, 14, 56]; the former possess spurious poles,
like 〈5|3+4|2], while the latter only have physical poles.

Also note that the two-term form (8.11) was obtained in [65] as a collinear limit of a very com-
pact form of the seven-gluon amplitude, which was originally obtained from the infrared behavior
of a one-loop N = 4 amplitude [18].

Let us also mention that many generalizations of the BCFW recursion relations have been
made, in particular, to include amplitudes with fermions and scalars [50, 51] and to gravity am-
plitudes [10, 35]. The recursion relations have also been generalized to amplitudes with massive
particles [6], and to some one-loop amplitudes in QCD [23].

8.2 One-Loop N = 4 Amplitudes of Gluons and Quadruple Cuts

Supersymmetric amplitudes of gluons are very special. The main reason is that these ampli-
tudes are four-dimensional cut-constructible. This means that a complete knowledge of their branch
cuts and discontinuities, when the dimensional regularization parameter is taken to zero, is enough
to determine the full amplitude. This is not true for non-supersymmetric amplitudes. As an exam-
ple consider the one-loop A(1+,2+, . . . ,n+) and A(1−,2+, . . . ,n+) amplitudes. One can prove that
both series of amplitudes are single valued functions of the kinematical invariants. This is enough
to conclude that they vanish in any supersymmetric theory10. In contrast, in non-supersymmetric

10This can also be derived using supersymmetric Ward identities. For a nice review see [37].
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gauge theories, they are interesting rational functions. These two series of amplitudes were shown
to be reproduced by a generalization of the BCFW recursion relations in [23].

Here we concentrate on N = 4 one-loop amplitudes. The reason these amplitudes are special
within the class of supersymmetric amplitudes is that they can be expressed in terms of known
scalar box integrals with coefficients that are rational functions of the spinor products.

In this part of the lectures, we explain a new technique that allows the computation of any
given scalar box coefficient as the product of four tree-level amplitudes. Now recall that either by
using MHV diagrams or the BCFW recursion relations11, any tree-level amplitude can be easily
computed. This implies that the new technique solves the problem of computing one-loop ampli-
tudes of gluons in N = 4 super Yang-Mills.

8.2.1 Review of The Unitarity-Based Method

One of the most successful methods in the calculation of one-loop amplitudes of gluons is the
unitarity-based method [21, 22]. This method was used to calculate all MHV amplitudes [21] and
all six-gluon next-to-MHV amplitudes [22] more than a decade ago. We review the basic idea of
the method focusing on the points that prepare the ground for the quadruple cut method.

The unitarity-based method can be described as a three-step procedure: (1) Consider a given
amplitude and use Passarino-Veltman or other reduction techniques [60] to find a set of basic in-
tegrals. In supersymmetric amplitudes of gluons, this means that any tensor Feynman integrals
that enters in a Feynman diagram calculation can be reduced to a set of scalar integrals, that is
Feynman integrals in a scalar field theory with a massless particle running in the loop, with rational
coefficients. In particular, for N = 4 super Yang-Mills, only scalar box integrals appear.

Scalar box integrals are defined as follows,

I(K1,K2,K3,K4) =
Z

d4`
1

(`2 + iε)((`−K1)2 + iε)((`−K1 −K2)2 + iε)((`+K4)2 + iε)
. (8.15)

This is really a function of only three momenta K1,K2,K3, for K4 = −K1 −K2 −K3 by momentum
conservation. This integral is UV finite but it has IR divergencies when at least one Ki is null, i.e.,
K2

i = 0. This implies that a regularization procedure, like dimensional regularization, is required.
The structure of the IR singular terms is well understood [36]. We do not discuss it here because it
is not relevant for the quadruple cut technique.

In a given amplitude, Ki is the sum of consecutive momenta of external gluons. We discuss
this in more detail below.

(2) Consider a unitarity cut in a given channel, say the s−channel. Recall that this is defined by
summing over all Feynman diagrams that contain two propagators whose momenta differ by s and
by cutting those two propagators. Cutting a propagator 1/(P2 + iε) means removing the principal
part, i.e., replacing the propagator by δ(+)(P2). When this is done, the internal particles go on-shell
and the sum over Feynman diagrams produces two tree-level amplitudes while the integration over
the internal momenta becomes an integration over the Lorentz invariant phase space of two null
vectors; this is known as a cut integral. As an example, consider the cut in the P2

i j-channel, see

11We also need the corresponding generalizations to include fermions and scalars [43, 71, 72, 42].
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l 2

l 1

j+1

i−1i

j

j+2

i+1

Figure 12: Unitarity cut in the P2
i j−channel. The blobs represent tree-level amplitudes in which the propa-

gator lines are interpreted as external on-shell particles.

figure (12), the cut integral is given by [45]

C =
Z

dµ A tree(`1, i, ..., j, `2) A tree(−`2, j +1, ..., i−1,−`1), (8.16)

where dµ is the Lorentz invariant phase space measure for (`1, `2). The measure is explicitly given
by

dµ = d4`1d4`2δ(+)(`2
1)δ

(+)(`2
2)δ

(4)(`1 + `2 −Pi j), (8.17)

with Pi j denoting the sum of the momenta of gluons from i to j.
(3) Use reduction techniques to write the integrand of (8.16) as a sum of terms that contain a

constant coefficient times two propagators. Once this is achieved, it is easy to construct a function
of scalar box integrals with given coefficients that has such a cut. Then repeat this for all other cuts,
remembering that a given scalar box integral has cuts in several different channels. This means that
one should not just add the functions obtained from the study of each channel. Instead one has to
combine them while avoiding to overcount. Once a function with all the correct discontinuities has
been constructed, this must be the final answer for the amplitude. The reason is that supersymmetric
amplitudes are four-dimensional cut-constructible, as mentioned above.

Using this technique, all MHV amplitudes and the six-gluon NMHV amplitudes were com-
puted more than ten years ago. More recently, the seven-gluon NMHV amplitude with all minus
helicity gluons adjacent was computed by using a combination of this method and the holomorphic
anomaly of unitarity cuts [34] in [31, 26]. The same result as well as all other helicity configura-
tions for the seven-gluon amplitude were obtained by the unitarity-based method in [18].

At this point it is important to mention that the integrand in the cut integral (8.16) is com-
plicated because in general there are many scalar box integrals sharing the same branch cut. The
reduction techniques, though systematic, can lead to very large expressions for the scalar box coef-
ficients [18]. These large expressions can be shown to be equivalent to simple formulas obtained as
educated guesses [18]. This is a hint that there must be a more direct method for computing such
coefficients.

A related difficulty comes from the fact that a given scalar box integral has many different
branch cuts. This means that after its coefficient has been computed from a given cut, one still
has to disentangle it from other unknown coefficients over and over again in the other cuts. This
somehow reduces the efficiency of the method.
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One way to improve the situation is by cutting three propagators [18][19]. Note that triple cuts
where a single gluon in trapped in between two cut propagators vanish. This would correspond to
a cut in a one-particle channel. In the next part of this lecture we will reconsider this issue.

Note that the number of scalar boxes with a given triple cut is less than that with a given
unitarity cut. However, in general one still has to apply reduction techniques. A class of amplitudes
for which triple cuts are very suitable are next-to-MHV (NMHV) amplitudes [19]. But, one might
expect that this procedure becomes cumbersome already for NNMHV amplitudes.

It turns out that there is a way of avoiding the reduction techniques as well as the recalculation
of known coefficients. This is achieved by considering quadruple cuts [27] which we now discuss.

8.2.2 Quadruple Cuts

Consider a scalar one-loop Feynman integral, I. The integral I is a function of the kinematical
invariants constructed out of the external momenta. In general, I is a complicated multi-valued
function with branch cuts that are like domain walls in the space of kinematical invariants, Σ. As it
is well known, cutting two propagators in the loop computes the imaginary part of the integral in a
certain region of Σ. This imaginary part of I can be thought of as the discontinuity of I across the
branch cut of interest.

Now consider unitarity cuts in several possible channels. One can ask what is the discontinuity
across the intersection of two or more cuts. The answer is given by the union of the set of cut prop-
agators! Of particular interest to us is the meaning of cutting all propagators in a one-loop integral;
such a cut integral computes the discontinuity across the singularity of highest codimension, which
is known as the leading singularity. For a more extensive discussion and references see [38]12.

As mentioned above, N = 4 one-loop amplitudes of gluons can be written as a linear combi-
nation of scalar box integrals with rational coefficients. The scalar box integrals can be thought of
as a “basis of vectors" in some sort of vector space. The idea is that this basis is in some appropri-
ate sense orthogonal13 (In less supersymmetric theories there also are bubble and triangle integrals
which break the orthogonality condition).

The one-loop amplitude A1−loop
n can now be interpreted as a general vector which can be

written as a linear combination of the basis. All we need is the appropriate way of projecting the
“vector" A1−loop

n onto a given vector I in order to compute the corresponding coefficient.
From our discussion, it is clear that the natural way of doing this is to consider A 1−loop

n in the
region near the leading singularity of I, which is unique to I. The discontinuity of A 1−loop

n across
such a singularity is the coefficient of I, up to a normalization, which is the analog of the norm of
I.

Let us see how this works in practice. Recall that the scalar box integral (8.15) is,

I(K1,K2,K3) =
Z

d4`
1

(`2 + iε)((`−K1)2 + iε)((`−K1 −K2)2 + iε)((`+K4)2 + iε)
. (8.18)

12In [38], the arguments are made for a massive scalar field theory. However, it turns out that the relevant results for
our discussion can be used in massless theories with little modifications.

13To push the analogy even further, one can think of the scalar box functions defined in [21], which are scalar box
integrals nicely normalized, as an orthonormal basis!
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k+1k
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j+1

Figure 13: A quadruple cut diagram. Momenta in the cut propagators flows clockwise and external momenta
are taken outgoing. The tree-level amplitude A tree

1 , for example, has external momenta (−`1, i+1, ..., j, `2).

In the expansion of A1−loop
n , each Ki in (8.18) is the sum of the momenta of consecutive external

gluons.
The discontinuity across the leading singularity ∆LS is computed by cutting all four propaga-

tors. This is called a quadruple cut:

∆LSI(K1,K2,K3) =
Z

d4` δ(+)(`2) δ(+)((`−K1)
2) δ(+)((`−K1 −K2)

2) δ(+)((`+K4)
2). (8.19)

In order to make the discussion more explicit we introduce notation for the coefficients of I in
the expansion of A1−loop

n as follows:

A1−loop
n = ∑

1<i< j<k<m<n

Bi jkmI(pi+1+...+p j,p j+1+...+pk,pk+1+...+pm), (8.20)

where the coefficients Bi jkm are rational functions of the spinor products, as mentioned above.
By cutting four given propagators in all possible Feynman diagrams contributing to A 1−loop

n

one finds the product of four tree-level amplitudes integrated over the Lorentz invariant phase space
of four null vectors.

Comparing the two sides of (8.20) we find
Z

dµA tree
1 A tree

2 A tree
3 A tree

4 = Bi jkm

Z

d4` δ(+)(`2) δ(+)((`−K1)
2) δ(+)((`−K1−K2)

2) δ(+)((`+K4)
2)

(8.21)
where the measure is the same one both sides of the integrals,

dµ = d4` δ(+)(`2) δ(+)((`−K1)
2) δ(+)((`−K1 −K2)

2) δ(+)((`+K4)
2), (8.22)

and the tree-level amplitudes are defined as follows (see figure (13))

A tree
1 = A(−`1, i+1, i+2, . . . , j−1, j, `2), A tree

2 = A(−`2, j +1, j +2, . . . ,k−1,k, `3),

A tree
3 = A(−`3,k +1,k +2, . . . ,m−1,m, `4), A tree

4 = A(−`4,m+1,m+2, . . . , i−1, i, `1).
(8.23)

In general one might expect that four delta functions localize the integral producing a Jacobian
which is common to both sides of (8.21) and cancels out to give

Bi jkl =
1
|S | ∑S

A tree
1 A tree

2 A tree
3 A tree

4 . (8.24)
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Here S is the set of solutions to the conditions imposed by the delta functions, and |S | is the number
of solutions.

The derivation of the formula for the coefficients (8.24) assumes that the Jacobian is a smooth
function and that it does not vanish for generic momenta of the external gluons and that it is the
same for all solutions S [26].

It turns out that both assumptions are not valid if at least one of the momenta Ki in the box
integral is null, i.e., if K2

i = 0 for some i. This is where the problem of defining a cut in a one-
particle channel, which we mentioned in the discussion of triple cuts, comes back again.

It is not difficult to see that by using δ(+)(`2) to reduce the integration over arbitrary `’s to
those lying in the future light-cone and by using that, say, K2

1 = 0 one finds that two of the three
remaining delta functions are enough to localize the integral. The last delta function, that can be
thought of as part of the Jacobian, imposes an extra constraint on the external momenta beyond
momentum conservation. Therefore, this makes our two assumptions fail.

This problem of defining a cut in a one-particle channel is the familiar statement that a gluon
cannot decay into two gluons. In other words, the tree-level amplitude A tree

1 in (8.21) vanishes.
It turns out that the way out of both problems is the same. Consider a Wick rotation of (8.21)

in to −−++ signature14. In this case one needs all four delta functions in order to localize the
integral. The integration can be done and produces a smooth and generically nonzero Jacobian.
The reason for this will be clear shortly.

It remains to see what happens to A tree
1 . If it is still zero it would imply that all coefficients

with K2
1 = 0 are zero. This is known to be false in MHV and NMHV amplitudes.

Let us look more closely at the tree-level amplitude A1 and the delta function containing only
K1. There are two cases,

A1(K
+
1 , `+,(`−K1)

−) =
[K1, `]3

[K1, `−K1][`−K1, `]
, A2(K

−
1 , `−,(`−K1)

+) =
〈K1, `〉3

〈K1, `−K1〉〈`−K1, `〉 .
(8.25)

The delta function is given by δ((`−K1)
2). This implies that 〈`, K1〉[`, K1] = 0. As reviewed in

section 2, in Minkowski space with real momenta λ and λ̃ are complex but not independent, i.e.,
λ̃ = ±λ̄ and therefore the only solution is 〈`, K1〉 = [`, K1] = 0. On the other hand, in −−++

signature, λ and λ̃ are real and independent, therefore we can have 〈`, K1〉 = 0 while [`, K1] 6= 0
or vice versa. This is also the reason why four delta functions are required to localize the integral
(8.19).

This explains how the problem is completely solved. When summing over the set of solutions
S , one must take into account the two possibilities, 〈`, K1〉 = 0 or [`, K1] = 0. One of them makes
A tree

1 vanish while the other does not. Actually, the presence of two solutions is important even
in the case when no Ki is a null vector. The reason is that each solution produces a function with
a square root. However, the coefficient must be a rational function. The resolution to this little
puzzle is that by adding the two solutions, which differ only in the branch the square root takes,
one always produces a rational function.

One can easily see that in general there are only two solutions to the delta function constraints.
The two solutions can be found explicitly in full generality; we refer the reader to [26] for the actual

14In some sense it is even more natural to complexify all momenta.
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Figure 14: (a) Scalar Box Integral I3+4,5+6,7+1. (b) Quadruple cut diagram of A1−loop
7 corresponding to

I3+4,5+6,7+1. Blobs represent tree-level amplitudes.

formula. This implies that |S | = 2. Using this in (8.24) we find a formula for all one-loop N = 4
amplitude coefficients in terms of tree-level amplitudes,

Bi jkl =
1
2 ∑

h,S
A tree

1 A tree
2 A tree

3 A tree
4 . (8.26)

The sum on the right hand side of (8.26) is over the two solutions S and over all internal particles
in the N = 4 supermultiplet.

8.2.3 Examples

As a simple example consider the coefficient of I(3+4,5+6,7+1) in A(1−,2−,3−,4+,5+,6+,7+).
In this case, only one internal helicity configuration gives a non zero contribution and it allows

only gluons to run in the loop.
Using (8.26) we find

B3572 =
1
2

[`1 `4]
3

[`1 2][2 `4]

[4 `2]
3

[`2 `1][`1 3][3 4]

[5 6]3

[6 `3][`3 `2][`2 5]

[`3 7]3

[7 1][1 `4][`4 `3]
(8.27)

After solving the equations for `i and plugging in the answer in (8.27) one finds a simple
expression for B3572 [26, 18]

− 〈1 2〉3〈2 3〉3[5 6]3

〈7 1〉〈3 4〉〈2|3+4|5]〈2|7+1|6](〈7 1〉〈2|3+4|1]− t [3]
2 〈7 2〉)(t [2]

7 〈2 4〉−〈3 4〉〈2|7+1|3])
.

(8.28)

Acknowledgements

It is pleasure to thank R. Britto, B. Feng for proof-reading parts of the manuscript. Work of F.
Cachazo was supported in part by the Martin A. and Helen Chooljian Membership at the Institute
for Advanced Study and by DOE grant DE-FG02-90ER40542 and that of P. Svrček in part by
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