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Twisted mass lattice QCD Andrea Shindler

1. Cutoff effects and renormalization

Phenomenological results from simulations of lattice QCD to compare with experiments should
be obtained with all the systematic uncertainties under control. The first requirement is to have an
efficient algorithm to simulate Nf = 2 dynamical light quarks with the possibility to include 1(+1)
heavier quarks. The algorithm should allow, in a reasonable time, to reach small pion masses
(my; < 300 MeV) where a matching with chiral perturbation theory (xPT) should become pos-
sible, and to simulate a large enough volume (L > 2 fm). The second requirement is to have a
lattice action with good scaling and simplified renormalization properties, as close as possible to
the renormalization of continuum QCD. The topic | want to address in this contribution is if lattice
twisted mass QCD (tmQCD), combined with a suitable algorithm, is a possible lattice action that
fulfills these requirements.

1.1 Lattice QCD action

Despite the only rather recent interest, the tmQCD fermionic lattice action has a long history.
It was introduced in [fl]] as a tool to study spontaneous parity and flavour symmetry breaking. In [B]
it was proved that lattice tmQCD is an alternative discretization of lattice QCD. The lattice QCD
action

S=§U]+& U,y 7 (1.1)
has a fermionic part given by tmQCD

S =a' S {B0D[U]+mo+iup W} (1.2)

and for the moment we leave unspecified the gauge part ;. In eq. ([L.2) D[U] is the massless
Wilson-Dirac operator

D] = 3 Dy + ) — T 0y 13)

mg is the untwisted bare quark mass parameter, u is the bare twisted quark mass, and 12 is the
third Pauli matrix acting in flavour space. In [f] it was shown that the standard framework of
the Symanzik improvement program, works in the similar way as for usual Wilson fermions. In
particular for spectral quantities no further improvement coefficients are needed. A set of scaling
tests have been performed, using the non-perturbatively improved clover action with twisted mass,
in small and large [B] volume, confirming that the usual Symanzik improvement program can
be applied also for tmQCD.

In a remarkable paper of Frezzotti and Rossi [f] a step forward was made. It was proved that
parity even correlators of multiplicatively renormalizable fields, are free from O(a) effects, and so
no improvement coefficients are needed (automatic O(a) improvement), if the target continuum
theory is fully twisted . The proof in [B] is based on a set of spurionic symmetries of the lattice
action. Here we give a simpler proof based on the symmetries of the continuum QCD action (see
appendix A of [f7]] for an analogous proof). The Symanzik [B, B} [L0, [[1] [[2]] effective action reads

Sk=+aS +... (1.4)

1To obtain automatic O(a) improvement in [E] also other possibilities were exploited. Here we will concentrate on
the automatic O(a) improvement that is used in numerical simulations.
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and we are interested in a continuum target theory where the physical quark mass is fully given by
the renormalized twisted mass pr (fully twisted theory)

S = / AdXP(X) [yuDp + iR T W(X) (1.5)

The correction terms in the effective action are given by
s=[dyay  Av =Yooy (16)
|

where the dimension five operators classified on the basis of the symmetries of the lattice action
are given by

OL=PouFwy  Co=p’WY  O3=NPy (L.7)
where A is an energy scale of the order of the QCD scale Agcp. The operator ¢ is the usual clover
term. The operators &, and 73 are related to the renormalization of the untwisted quark mass.
Since we are interested in a continuum target theory where the untwisted quark mass vanishes,
the operator &3 parameterizes the mass independent O(a) uncertainties in the critical mass. We
consider now a general multiplicatively renormalizable multilocal field that in the effective theory
is represented by the effective field

A lattice correlation function of the field ® to order a is given by

(®) = (Pg)o +a / d*Y(®6.Z (y))o+a(D1)o + ... (1.9)

where the expectation values on the r.h.s are to be taken in the continuum theory with action . The
key point is that the continuum action ([L.5) is symmetric under the following parity transformation

W(x) — w(ipT)P(x, —X) (1.10)

TX) — W0, —x)(I57°) o (1.12)
and that all the operators in eq. ([L.7), of the Symanzik expansion of the lattice action, are odd under
the parity symmetry of the continuum action. If the operator @ is parity even, the second term
in the r.h.s. of eq. ([L.9) vanishes, and ®4, being of one dimension higher, is parity odd: for the
same reason the third term in the r.h.s of eq. ([L.9) vanishes. Possible contact terms coming from
the second term amount to a redefinition of ®; and so do not harm the proof.

Itis then also clear that in order to achieve automatic O(a) improvement, the continuum target
theory must have a vanishing untwisted quark mass mg, otherwise the standard mass term mry@ Y
will break the parity symmetry of the continuum action defined before. The most natural way to
achieve this on the lattice is by setting the untwisted bare quark mass to its critical value mg = m.
The proof also shows that a possible uncertainty of O(a) in the critical mass does not wash out
automatic O(a) improvement since these uncertainties, are odd under parity. A remark is in order
now. We take the polar mass defined in

M= /u2+mé =/ %+ (man?)?; My =My — M (1.12)
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where the n; term parameterizes the mass independent O(a) uncertainties in the value of the un-
twisted quark mass my. Expanding in powers of a we have

n1a2/\4
2u?

M~ [1+ +0(a% (1.13)
We observe immediately that as soon p < aA?, even if parametrically O(a) terms are absent in
(L.13), there is a term of O(a?) with a coefficient that tends to diverge as soon u is made smaller and
smaller. From this example we can conclude that to have an effective automatic O(a) improvement,
without big O(a?) effects, with a generic choice of the critical mass, such that the uncertainties
in the untwisted quark mass are of order aA?, we need to have the constraint u > aA?. It has
been shown in [[q] that these cutoff effects that diverges at small quark masses, so called infrared
divergent (IR) cutoff effects, are a general property of tmQCD. These dangerous cutoff effects are
removed by an appropriate choice of the critical mass.

1.2 O(a) improvement and small pion masses

The O(a) uncertainties of the untwisted quark mass depend on how the critical line is fixed,
hence the choice of the critical mass has to be discussed with care. The issue was raised by the
work of Aoki and Bér [[L3] and by the numerical results obtained in [[L4]. This problem has been
further analyzed in several aspects [fI5, [, [L6]. In [[L3, [(5, [L6] the theoretical framework is twisted
mass chiral perturbation theory (tmxPT) [[L7]] where the cutoff effects are included in the chiral
lagrangian along the lines of [fLg, [[9]. In this framework a power counting scheme that includes
quark mass and lattice spacing has to be specified. In particular in [[L3] the power counting was
u ~ a2A3 while in [[[9] it was p ~ aA2. We stress here that this approach for the description of
lattice data, does not require a continuum extrapolation, hence the power counting scheme does not
mean that pt goes to zero in the continuum limit but represents only an order of magnitude equality.
Both these works [[L3, [[3] agree on the fact that choosing the critical mass imposing a vanishing
PCAC quark mass

Mpcac = %gazﬁf (())(()>PP: ((g))>> a=12 (1.14)

where -
AL(X) =B (X)Yuys — Y (X) (1.15)
P = WO 90 (116

allows to have automatic O(a) improvement, and in particular down to quark masses that fulfill
u ~ a?A3 for [[13] and &A% < u < aA? for [L5]°. In [[A] a Symanzik expansion along the lines of
[[2] was performed confirming the results of [fL3, L5].

A possible practical procedure is then to compute for a fixed value of u the critical mass
m. from the vanishing PCAC mass, and then to extrapolate the set of critical masses obtained
for different values of u to u = 0 (method A). This procedure has been used in [RQ, P1]. In
fig. [] a typical extrapolation of the critical mass to u = 0 is shown. With this procedure the O(a)

2We will seein section @ that the phase structure of Ny = 2 dynamical Wilson fermions does not alow anyway the
twisted mass to be smaller then pic ~ a2A3.
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uncertainties of the critical mass are fixed in such a way that, for a generic value of u, the dangerous
aA? cutoff effects in the untwisted quark mass are absent. The slope of the curve is proportional
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Figure 1. Determination of the critical mass m¢ (k;* = 2am. -+ 8) for given values of u at B = 6.0, and
extrapolation to u = 0. The red point is the critical mass determined with method C (see text). The difference
between the two determination of the critical mass should be an O(a).

to O(a) cutoff effects related to the discretization errors of the PCAC mass [[7}, P23, [[6]. We remind
that it is not surprising that the PCAC mass is not automatically O(a) improved since it is an odd
quantity under the parity transformation of egs. (.10}, [L.17).

In [23] the extrapolation to u = 0 is not performed and each value of the critical mass has been
used for the corresponding value of ut used in the simulations (method B). With this method the
O(a) cutoff effects of the critical mass are obviously fixed in such a way that the untwisted quark
mass is always vanishing for all the simulation points.

These two methods, even if they give different cutoff effects to the critical mass, are perfectly
good in order to achieve automatic O(a) improvement. Another possible way to fix the critical
mass, expecially practical for expensive dynamical simulations, is to compute the critical mass,
using the PCAC relation at the smallest value of u, and then use this critical mass for all the
simulation points at heavier masses.

Using methods A and B a set of quenched studies [R4, [l4, P5, B3 20, B, have been
performed to check the result of [B] and to gain experience with this formulation of lattice QCD.
An interesting quantity to compute with tmQCD is the pseudoscalar decay constant fps. As it
was noted in [B, B8, 4], the computation of fps does not require any renormalization constant, in
contrast of ordinary Wilson fermions, and moreover given automatic O(a) improvement, does not
need the computation of any improvement coefficient. Thus the situation for this quantity is like
with overlap fermions. In fig. f| (left panel) the continuum limit of rq fps 3, the critical mass being
computed with method A, is shown as a function of (a/ro)?. The scaling is consistent with being of
0(a?), and moreover the O(a?) effects are rather small for all the pseudoscalar masses investigated
down to mps = 272 MeV. The right panel of fig. P shows the chiral behaviour of the continuum
pseudoscalar decay constant, compared with the non-perturbatively O(a) improved data of [P7].

3The values of ro/a, ro = 0.5 fm being the Sommer scale [pg], are taken from [BJ.
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Figure 2: Left panel: scaling behaviour of rofps for 3 fixed values of romps. Right panel: Continuum limit
values for fpg as a function of m,%s in physical units. The empty squares are taken from [@].

We remark that this comparison is purely illustrative since it is in the quenched approximation, and
the simulations with clover fermions had to stop around mps ~ 500 MeV due to the appearance of
exceptional configuration. To see the potential of tmQCD another interesting phenomenological
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Figure 3: (x)MS(u = 2 GeV) extrapolated to the continuum as a function of the pion mass. Open squares
represent results that are obtained from a combined continuum extrapolation of earlier Wilson and clover-
Wilson simulations [@]. The filled circles represent results using Wilson twisted mass fermions [. The
open circle denotes a result which is not corrected for finite size effects and the diamond corresponds to the
experimental point.

guantity is the average momentum carried by valence quarks in a pion ((x)). In [B2] results using
tmQCD were presented. Here we concentrate on the chiral behaviour in the continuum, having in
mind that the renormalization has been performed already in a non-perturbative way [B3, BT. Fig.
B shows that in principle also for this quantity small pseudoscalar masses mps < 300 MeV can be
reached, opening the possibility of a safe chiral extrapolation.
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Figure 4: Left panel: comparison of the chiral behaviour at fixed lattice spacing (3 = 6.0) of the pseu-
doscalar decay constant computed using method A, B, C and with results obtained with overlap fermions.
Right panel: unconstrained continuum limit, for several values of fixed charge pion masses, of rofps per-
formed using method A and C to determine the critical mass.

In [L4] to obtain automatic O(a) improvement the critical mass m was computed extrapolating
the squared pseudoscalar mass to the chiral limit using data from the pure Wilson theory (method
C). Using this determination of m. several quantities were computed. In particular in the left
panel of fig. [ there is a comparison of the chiral behaviour at fixed lattice spacing (8 = 6.0) of
the pseudoscalar decay constant computed using method A, B, C and with results obtained with
overlap fermions [B4]. While methods A, B and the overlap data are all consistent within the
statistical errors,* the data obtained using method C to fix the critical mass, show a “bending”
towards the chiral limit. The same phenomenon was observed also for the vector mass [[[4]. The
“bending” phenomenon appeared exactly when u ~ aA?. Having in mind the caveat observed
before in the proof of automatic O(a) improvement, this indicates that the extraction of the critical
mass with method C leaves the dangerous aA? in the untwisted quark mass uncanceled. This is
numerically confirmed by the results of [RT]], showed in the right panel of fig. ], since using method
A and C to determine the critical mass, a consistent continuum limit is obtained, showing also that
method C induces big O(a?) effects and a reduced scaling window.

A description of the “bending” phenomenon at fixed lattice spacing, has been obtained in [R2]
using xPT, as it is shown in the left panel of fig. [, where a fit to available quenched data is per-
formed on the ratio R= aZ;jPS. This analysis shows also that xPT theory is able to describe the
lattice data up to u ~ 80 MeV. It is reassuring that using method A to determine the critical mass
and restricting the data to the region were xPT is applicable the ratio R is flat (right panel of fig.
B) consistently with continuum xPT (up to chiral logs). In [[], based on the observation that the
big O(a?) effects come from uncanceled O(a) of the PCAC mass, to eliminate the “bending” phe-
nomenon has been proposed to use a non-perturbatively improved tmQCD action. This approach
has been numerically tested in [BF], and as it can be seen in fig. B indeed it confirms that the
“bending” phenomenon also in this case it is not present.

“4We recall here that since the comparison is made at fi xed lattice spacing the datain principle could disagree due to
different cutoff effects.
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Figure 5: Left panel: bending phenomenon at 8=6.0 on the ratio R = aa—rL%S and its description with xPT.
Right panel: comparison of the ration R using method A and C to determine the critical mass.
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Figure 6: Comparison of the chiral behaviour at fixed lattice spacing (3 = 6.0) of the pseudoscalar decay
constant computed using method A and C for both tmQCD and non-perturbatively improved tmQCD.

1.3 Renormalization

In [B6] it has been given a construction of a Schrodinger functional (SF) with twisted bound-
ary conditions that preserves the nice properties of O(a) improvement without bulk improvement
coefficients; (see [B7] for a possible alternative to this construction). The construction is based
on the consideration that in a finite volume with suitable boundary condition the Wilson theory
in the chiral limit is O(a) improved, and it makes use of orbifolding techniques (see [Bg] for an
application of orbifolding techniques to Ginsparg-Wilson fermions).

A simple way to visualize the construction is to repeat the proof of automatic O(a) improve-
ment given in section [L.1], where now since we are in a finite volume with suitable boundary con-
ditions, the twisted mass could be safely sent to zero. Then the new boundary projectors [B6]
QL = %(1+ iy )s %) commute with the previous parity transformation (as the twisted mass term
in infinite volume). It is very important to note that the new boundary projectors can be obtained
performing a chiral rotation of the original projectors in the standard SF framework [B9]. An im-
portant consequence is that the running of the coupling constant, should be identical to the running
computed with the “old” SF [(]. The O(a) uncertainties in the critical mass do not harm the O(a)
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improvement.

2. Flavour symmetry

When tmQCD is used to define the standard QCD correlation functions some of the physical
symmetries are restored only in the continuum limit. In particular flavour and parity symmetries.
The explicit breaking of flavour symmetry generates for example splitting between charged and
neutral pions, while the absence of parity symmetry, gives as a consequence the appearance of
states of opposite parity in the spectral decomposition of usual correlators. Both these phenomena
are expected to vanish, at maximal twist, with a rate of O(a?) [fF]]. Here we concentrate on the
flavour symmetry breaking.

To fix the notation we recall some basic definitions. The charged pseudoscalar currents are
given by

P BN 1= T @
and a possible interpolating field for the neutral pion is the scalar current
SX) =R YX). 2.2)
The charged and neutral pseudoscalar masses can be extracted by the following correlators
Crr (%) =@ Z<P+(X)P’(0)> Cro(%0) = &° Z<S°(X)S°(0)> (2.3)
Co(x) =a Z {{(—tr[G(0,X)G(x,0)] +tr[G(x,x)]tr[G(0,0)]) } (2.4)

where G(x,y) is the fermionic propagator. In [f2] a pilot quenched study has been preformed to
study flavour breaking effects with tmQCD. For the neutral pseudoscalar correlator in eq. (R.4) a
first possibility is to study only the connected part. In the quenched approximation it is still possible
to interprete the connected part in terms of local operators. The reason is that one could think the
connected part as coming from Wick contractions obtained using the Osterwalder-Seiler (OS) [A3]
action

Sos =a'y {W(X)[D[U]+mo+ipysy(x)}. (2.5)

This action has a trivial flavour structure and so does not present any flavour breaking, and in
particular the disconnected part of eq. (2.4) vanishes. We remark that this is not the neutral pseu-
doscalar meson of tmQCD, but it is an interesting quantity to study with precise data on its own,
in view of a possible use of mixed actions (the OS action for the valence quarks and tmQCD for
the sea quarks). In fig. [f] the scaling behaviour of the connected correlator (OS pseudoscalar), is
compared with the pseudoscalar meson in tmQCD where also the disconnected part is included (in
both computations method A is used for the determination of the critical mass). For all the tech-
nical details of the computation of the disconnected part I refer to [, f4]. The results show an
0(a?) scaling for both the pseudoscalar masses, even if there are indications that the neutral pseu-
doscalar meson for tmQCD (with the inclusion of the disconnected correlator) has reduced cutoff
effects, within the rather large statistical errors. It is possible to give a very rough estimate of the
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Figure 7: Scaling behaviour of the mass splittings between the neutral and the charged pseudoscalar masses
for 2 values of romps. The open squared are the data for the neutral pseudoscalar meson with tmQCD, and
the stars only the connected contribution (pseudoscalar meson with OS action). The full and dotted lines are
an estimate of the a® dependence for the two pion splittings, making the hypothesis that O(a?) effects are
mass independent.

pion splitting ré(mzn0 — mzni) ~ c(a/rg)? with c ~ 10 (with large errors). Comparing to a quenched
simulation for naive staggered fermions with Wilson gauge action [(5], one finds a similar size of
the flavour splitting encountered for the pion mass at a similar lattice spacing with a value ¢ ~ 40.
For dynamical improved staggered fermions a value of ¢ ~ 10 has been found [f8].

An interesting study of the flavour breaking effects was presented at this conference in [§]. To
avoid the computation of disconnected diagrams in the quenched approximation a second doublet
for strange and charm quarks is introduced following the strategy of [#7]. Then the splitting on the
kaon system is studied. In this study method B has been used for the determination of the critical
mass. The results shown in fig. [, indicates that, as expected, the flavour breaking effects vanish
linearly with a rate of a, but that indeed they could be significant at a lattice spacing a > 0.1fm.
Another way to study flavour breaking effects is to consider A correlators. This was exploited in
[B3, F9], and studied in xPT in [A9]. Recent results [A4] with N¢ = 2 dynamical tmQCD fermions
and DBW?2 gauge action (see next sections for details on the simulation parameters), indicate that
at a lattice spacing of a~ 0.12 fm and a mass u ~ 12 MeV, the pion mass splitting even if with
large errors, is consistent with zero.

3. N=2

3.1 Algorithmic improvements

In the Lattice 2001 conference A. Ukawa presented [pO] a rather impressing analysis on the
possibility of simulating light quark masses with Wilson fermions. This was summarized with
the now well known Berlin wall figure (see [FI]] for a recent update). Recently new algorithms
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Figure 8: Scaling behaviour of the mass splitting between neutral and charged kaons.

[62, B3] have been proposed that have finally moved the wall to rather small quark masses. Both
the algorithms are based on the standard HMC but have used new preconditioner. In [B2] it was
shown that with a domain decomposition (DD) preconditioning combined with a multiple time (mt)
scale integrator [B4], light quark masses (my = 294 MeV) are reachable with Wilson fermions with
remarkable performances. In [B3] another very efficient preconditioner for the HMC algorithm
has been introduced and tested, based on a mass preconditioner [p5] (also known as Hasenbusch
(H) acceleration) with again a multiple time scale integrator. In table [If is summarized a rough
comparison between the two algorithms, using different lattice actions, based on the so called
cost figure v = 1073(2N + 3)Tine(P) introduced in [F2]. The conclusion is that the algorithms
have comparable performance down to pion masses of the order of my; ~ 300 MeV. In fig. fis
plotted the update of the Berlin wall figure. On the left panel there is a comparison between the
results of [53, B6] (squares and diamond) and the results of [B7] (circles). The lines are functions
proportional to (mps/my)* (dashed) and (mps/m\y)® (solid). On the right panel it is shown a
comparison between the Ukawa’s formula in [BQ] (solid line) and the extrapolation of the results
in [B3] using a (mps/m\/)* (dashed) and a (mps/m\/)® (dotted) dependence for the data. The arrow
indicates the physical pion to rho meson mass ratio. In addition there are also data points from
staggered simulations (see [p] and references therein). In particular this plot indicates that running
for one year a 1 Tflop sustained performance machine allows to generate at the physical point with
a~ 0.08 fm and a lattice of 242 x 40, 1000 independent trajectories.

3.2 Phase diagram of Wilson fermions

In the first study of tmQCD with Nt = 2 dynamical fermions was performed. Starting

Action Algorithms ro/a my [MeV] % Tint

W+W | (mt)(DD)HMC [B2] | 6.40(15) | 294 | 0.74(18) | 21(5)
tisym+Wtm | (mt)(H)HMC [E3] | 5.20(25) | 280 | 0.49(34) | 21(14)

Table 1: Comparison of the 2 algorithms discussed in the text for a similar physical situation.
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Figure 9: Computer resources needed to generate 1000 independent configurations of size 243 x 40 at a
lattice spacing of about 0.08 fm in units of Tflops - years as a function of mps/my. See text for a detailed
description of the plots.

the exploration of a completely new territory, it is always good to remember a sentence of G.
Parisi [F9] “Let me describe a typical computer simulation: the first thing to do is to look for
phase transitions”. It is important to have then the correct understanding of the phase diagram with
Wilson fermions in the 3 parameters space (8 = 6/g(2,,m),u). To check that the results are not
induced by the algorithm used it is always good to have at least 2 algorithms that reproduce the
same results.

Indeed in [Bg] using the so called TSMB [B0] and GHMC [B5, b1 algorithms rather surprising
results were found. The action used was Wilson gauge action combined with Wilson fermions with
and without twisted mass. In particular at a lattice spacing of a= 0.16 fm, strong evidence of a
first order phase transition was found for a rather large range of values of twisted masses going
from zero twisted mass to u ~ 100 MeV. This study reveals also that the phase transition tends
to disappear increasing the value of u, it persists for u = 0 and it is volume independent. A
typical example of a MC history for the plaguette expectation value can be seen in fig. [0, where
a cold and a hot start was performed. These results can help to see from a different point of
view old numerical and theoretical works. In [B2, B3] from a finite temperature study there was
an indication of difficulties in observing a phase with spontaneous breaking of flavour and parity
symmetry (Aoki phase) at 8 > 4.8. In [B4] the MILC collaboration found a surprising bulk first
order phase transition for Wilson fermions at 8 ~ 4.8. In [B5] an analysis using the linear sigma-
model is performed, finding an indication of two possible patterns of symmetry breaking at finite
lattice spacing. This observation was put on firmer theoretical basis in [[L§]. In this very important
paper several interesting results and consideration were done, that, seen now from a different point
a view, can help to understand the rather surprising numerical results obtained in [pg]. In [[L8] for
the first time the concept of chiral lagrangian at finite lattice spacing is given. The key point of the
construction is the observation that the Pauli termin the effective Symanzik lagrangian transforms
under chiral rotation exactly as does the mass term. | would like to add that this is also the key
point for the automatic O(a) improvement for tmQCD at maximal twist. Neglecting the derivative
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Figure 10: Metastable states at § = 5.2. Left panel: MC history of the average plaquette value with a twisted
quark mass p ~ 10 MeV and a lattice size 162 x 32. Right panel: MC history of the average plaquette for
pure Wilson fermions (u = 0) and a lattice size 123 x 24.

interaction, being interested in the vacuum state, the potential of the effective chiral lagrangian
reads

_ G ty, G2 2
V=g (E 4 (42 (3.1)
c~mAS o ~mPA?mant+a2A° i =m—an? (3.2)

where Z is the matrix that collects the Goldstone boson fields of the theory. We remark here that
m is a redefinition of the untwisted quark mass that includes the O(a) coming from the clover
term. Up to O(a?) m is proportional to the PCAC quark mass. The two terms in the potential
become comparable when m' ~ a?A3. In this region of quark masses the competition of these two
terms causes a non-trivial vacuum structure that gives the following 2 scenarios [[L8] for the phase
diagram of Wilson fermions: 1) The Aoki phase [fll]; 2) The existence of a 1% order phase transition
[L8]. The extension to tmQCD of these results is done in [B8, b7, B8]. The result is summarized
in fig. [L] where the x-axis is ' /a® and the y-axis is /a%. A non-zero value of the twisted mass
washes out the Aoki phase introducing an explicit breaking of flavour and parity symmetry. As can
be seen from fig. [[7 (left panel) the Aoki phase lies on the untwisted axis. In the second scenario
in fig. L7 (right panel) the first order phase transition line extends into the twisted direction to a
distance of e ~ a?A3. The transition ends with a second order phase transition point, where the
neutral pion mass vanishes. Several comments are in order now. The occurrence of one of the
two scenarios depends on the sign of the coefficient ¢, proportional to the O(a?) term in the chiral
lagrangian. This coefficient ¢, depends on the choice of the gauge action, on the presence in the
lattice action of the clover term and on the bare gauge coupling. An analysis with Wilson fermions
of the two dimensional Gross-Neveau model [69] indicates that indeed both the scenarios describe
the phase structure of Wilson fermions depending on the value of the couplings of the model. The
analysis shows that at strong coupling there is an Aoki phase while at weak coupling the first order
phase transition line sets in. This analysis has been recently extended for the twisted mass case
@], indicating even more complicated structures, like a coexistence of the two scenarios at the
same value of the coupling.

Our present understanding of the lattice QCD phase diagram can be summarized as follow-
ing. For values of the lattice spacing much coarser than a = 0.15 fm there is a second order phase
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Figure 11: Left panel: the phase diagram of Wilson diagram according to x PT for c; > 0. Right panel: as
the left panel but for c; < 0. The x-axis is m’/a? and the y-axis is u/a®.

transition from the standard lattice QCD phase to the Aoki phase [fl], /1, [/3]. For smaller values of
the lattice spacing a first order phase transition appears [B8] 73, 4, 5] that separates the positive
guark mass from the negative quark mass phase. This first order phase transition is reminiscent
of the continuum phase transition when the quark mass is changed from positive to negative val-
ues with the corresponding jump of the scalar condensate as the order parameter of spontaneous
chiral symmetry breaking. The generic phase structure of lattice QCD is illustrated in fig. L2 and

discussed in refs. [pg, [[3, [74].

I Aoki phase
I 1%t order phase transition plane

B

Figure 12: Current knowledge of the Wilson lattice QCD phase diagram as function of the inverse gauge
coupling B 0 1/g2, the hopping parameter k and the twisted mass parameter .

3.3 Minimal pion mass

In the scenario with a first order phase transition the pseudoscalar mass mps cannot be made
arbitrarily small both if the chiral point is reached from the untwisted or the twisted direction.
Lowering the quark mass from the untwisted direction the algorithm will start to sample also in the
region with negative masses. The minimal pion mass reachable will then depend on the algorithm
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B =3.65 B =375 B=3.90
au =0.01 apu =0.0094 —0.005 | au =0.0075-0.004
a~0.13fm a~0.12fm a~0.1fm
L ~1.56 fm L ~ 2fm L~1.6fm
(M) min ~ 450 MeV | (Mg)min =~ 400 MeV | (Mg)min =~ 280 MeV

Table 2: Summary of the simulation parameters for dynamical runs of tmQCD with tISym gauge action.
The last line is an estimate of the minimal pion mass reachable without encountering metastabilities.

used and on the strength of the phase transition. Lowering the quark mass from the twisted direction
there is a minimal pion mass given directly by the extension of the first order phase transition line,
even if the twisted mass gives a sharp infrared cutoff in the sampling performed by the algorithm.

It therefore becomes important to understand the phase structure of lattice QCD as a pre-
requisite before starting large scale simulations. As we have seen the extension of the first order
phase transition line in the twisted direction is proportional to the coefficient |c;|. This coefficient
depends both on the gauge action used and on the presence of the clover term in the lattice action.
In [[73] has been studied the lattice spacing dependence of of the first order phase transition with
Wilson gauge action, taking as a measure of its strength, the gap between the two phases in the
plaquette expectation value and in the PCAC quark mass. The qualitative estimate for the lattice
spacing, where a minimal pion mass m; ~ 300 MeV could be reached, without being affected by
the first order first transition is 0.07-0.1 fm.

It is suggestive that at the microscopic level the occurrence of this first order phase transition is
accompanied by a massive rearrangement of the small eigenvalues of the Wilson-Dirac. This rear-
rangement could be suppressed by the use of a renormalization group improved or O(a?) improved
gauge actions, and indeed results from [[f§] indicate that metastabilities in the average plaquette
observed for Ny = 3 dynamical Wilson fermions with a clover term (there is also an indication that
the same metastabilities survive without a clover term for N¢ = 3), can be suppressed replacing the
Wilson gauge action with the lwasaki action [[f7].

3.4 Tree-level Symanzik improved gauge action

The dependence of the phase diagram on the gauge action used and on the lattice spacing
has been studied in a set of papers [Bd, 73, 4, 5] (see also [[7g] for a detailed summary of these
results). The gauge actions so far studied can be parameterized by

S =Bl 3 (1 PP v) 4 br(1— PP v))] 33)
X, U<V

with the normalization condition by = 1 — 8b;. The parameters of the tree-level Symanzik action
791 (b1 = —1—12) simulations are summarized in tab. Pl The last line indicates an estimate of the
minimal pion mass reachable at the corresponding lattice spacings. In order to check for a possible
phase transition and corresponding metastabilities a measure of the average plaquette value as a
function of the hopping parameter kK on runs that start from both a hot and a cold configuration
has to be done. Since the metastability, if any, will show up around k. (determined monitoring the
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PCAC mass mpcac at the corresponding fixed value of u) attention should be given to the hot and
cold runs on k-values closest to k¢ only.

At B =3.65,a~0.13fm, 123 x 24 and p ~ 15 MeV there are signs of a very nearby phase
transition, as can be deduced from the steep rise in k of the plaquette expectation value (left panel
in fig. [[3), from a very slow thermalization and large fluctuations of the plaquette MC history value
over several hundreds of trajectories (right panel in fig. [[3). An estimate of the pseudoscalar mass,
close to K¢, is mpg ~ 450MeV.

0.56

0.555 —

055+ 8 - |
Q
. .
g
S 0545 - B
2
% L

054 8 - |

e
0535 = u
053 . | . | . | . | . | . | . | . | .
169 0.17 0.171 0.172 0.173 0 500 1000 1500 2000 2500
K MCtime

Figure 13: Left panel: Average plaquette value vs. k at 8 = 3.65, rou = 0.038 on a 122 x 24 lattice from hot
(red symbols) and cold starts (blue symbols). Right panel: Average plaquette MC time history for two runs at
B =3.65,rou = 0.038, k = 0.17024 on a 123 x 24 lattice starting from hot (red line) and cold configuration
(blue line).

At B =3.75,a~ 0.12 fm, 123 x 24 and u ~ 8 MeV there is a similar situation we have
observed before at B = 3.65 and u ~ 15 MeV. This is described by fig. [4 (left panel), where it is
plotted the k dependence of the PCAC mass. This dependence is very useful to monitor a possible
metastable critical point, since this shows up in a different extrapolated k¢, when the extrapolation
is performed from positive or negative quark masses. A second twisted mass u ~ 15 MeV has
been simulated in a lattice 162 x 32 around the critical point for this lattice spacing. Even if a
strict check done with a hot and a cold start is not available at the moment the k dependence of the
PCAC mass for this second value of u suggests that the critical point is free from metastabilities.
The pseudoscalar mass measured for the heaviest twisted mass is around mps ~ 400 MeV. At
B =39a~0.1fm, 163 x 32 and i ~ 8 and 15 MeV, there are no signs of metastabilities at the
two corresponding critical points. In fig. [4 (right panel) is plotted the k dependence of the PCAC
guark mass. The pseudoscalar masses obtained for the two values of u are respectively mpg ~ 280
and 450 MeV. We remark also that the physical volume at this 8 value is rather small L ~ 1.6 fm,
and results obtained for pure Wilson fermions [B2, B7], indicate that for these quark masses and
these volumes the finite size effects could be substantial. The estimate of the minimal pseudoscalar
mass for this lattice spacing is then clearly only an upper bound.

3.5 DBW2 gauge action

In this section | summarize the results [[73] obtained using the so called DBW?2 gauge action
(by = —1.4088). The parameters used in the simulations are summarized in tab. The
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Figure 14: PCAC quark mass mpcac Vs. K on a 162 x 32 lattice. Left panel: a ~ 0.12 fm, u ~ 8 MeV. Right
panel: a~ 0.1 fm, u ~ 15 MeV.

B =0.67 B=0.74
au =0.01 au = 0.0075
a~0.19 fm a~0.12 fm
L~23fm L~2fm
(M) min =~ 360 MeV | (Mg)min ~ 320 MeV

Table 3: Summary of the simulation parameters for dynamical runs of tmQCD with DBW2 gauge action.
The last line is an estimate of the minimal pion mass reachable without encountering metastabilities.

twisted mass for the two lattice spacing is kept roughly fixed to u =~ 12 MeV. The last line indicates
an estimate of the minimal pion mass reachable at the corresponding lattice spacings. Also for this
gauge action several quantities have been computed. Here we concentrate as before on the PCAC
mass and on the minimal pion mass. In contrast with the tISym results here simulations at full twist
were never performed, so the evidence for a metastability region can be deduced only indirectly
from the dependence of the PCAC mass on the untwisted quark mass as discussed before. In fig. [L5]
is shown the 1/(2k) dependence of the PCAC mass for the two lattice spacing used. At a= 0.19
fm there is an indirect evidence of a small metastability at full twist, that seems to disappear at
a= 0.12 fm. To summarize, there are first indications, that in order to reach pion masses of the
order of mps ~ 300 MeV with tmQCD a gauge action like tISym or DBW?2 is appropriate. There
are also first indications that this pion mass can be reached with DBW?2 at slightly coarser lattices.
In order to avoid possible large cutoff effects with DBW?2 (see for example fig. 3 in [B1]), or
big coefficients in perturbative expansions, with the present data, the tISym gauge action may be
considered a better choice.

36 Nr=2+1+1

The fact that tmQCD can be formulated only for an even number of flavours is not a limitation.
Indeed using an off diagonal splitting, where the degenerate quark doublet has a different flavour
orientation from the splitting between the quarks, in [B2] it was shown that the determinant for non
degenerate quarks is real and positive (see [(7] for alternative formulations of tmQCD including
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Figure 15: Determination of the critical hopping parameter k. by extrapolating to zero the untwisted PCAC
quark mass mpcac. The small discrepancy observed at 3 = 0.67 (left panel) between extrapolations from
positive and negative quark masses is probably a small effect of the first order phase transition. For 3 =0.74
(right panel), extrapolations from both sides give consistent results. An alternative way to fix the critical
mass is also plotted (see [[78] for details).

a non degenerate doublet). The only restriction of the construction in [B2Z] is on the value of
the ratio between renormalization constants of the pseudoscalar and scalar current. To give an
example, fixing the values of the renormalized strange and charmquark masses, gives the following
constraints

ul ~1.5GevV  pf ~0.1GeV = i—z > 0.875. (3.4)

At this conference first results with dynamical Ny = 2+ 1 + 1 twisted quarks have been presented
[F8]. The simulations of the N = 2+ 1+ 1 theory are performed by a polynomial hybrid Monte
Carlo algorithm (PHMC)[B3]. The structure of the algorithm goes along the lines indicated in [B4].
At this conference another variant of the PHMC to include the two non degenerate twisted quarks
has been presented [B3].

4. Further results

In this section | summarize further results concerning tmQCD. In [B] it has been presented
a strategy to compute Bk and matrix elements related to the Al = 1/2 rule without mixing with
operators with wrong chiralities, retaining all the properties of automatic O(a) improvement. The
strategy is based on the usage of a mixed action (OS for valence quarks and tmQCD for sea quarks)
[F3]. In the quenched approximation Bk has been computed [B7] in the continuum limit, us-
ing clover improved tmQCD and a non-perturbative renormalization without mixing (in the SF
scheme). A strategy to compute Bg with tmQCD, along the lines of [B8], has been proposed in
[BI1, and along the lines of [E1] in [PQ]. In [E7] a strategy, based on clover improved tmQCD with
Nf = 4, has been proposed to compute the renormalization of K — 1m matrix elements. In [P1]] the
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effect of a twisted mass term of the low-lying modes of the Wilson-Dirac operator and a remnant
of the index theorem for twisted mass fermions has been discussed.

5. Conclusions

Several lessons come from quenched studies of tmQCD. With a particular and field theoreti-
cally well founded definition of the critical mass, automatic O(a) improvement is effective till small
pion masses (M, = 272 MeV), and the residual O(a?) cutoff effects are small. The bending phe-
nomenon just results from big cutoff effects, that are reproducible with xPT at finite lattice spacing.
The bending phenomenon is not present even at finite lattice spacing with a suitable choice of the
critical mass. The flavour breaking is an issue and it has to be investigated with dynamical simu-
lations. We have indications of the existence of an Aoki phase for quenched Wilson fermions at
lattice spacings around a~ 0.1 fm.

To perform dynamical simulations at small pion masses, algorithmic improvements are crucial,
and now new algorithms allow to have efficient and performant simulations with Wilson fermions
and most probably with staggered fermions.

We have a much better understanding of the phase structure of dynamical Wilson fermions.
A theoretically well founded action (tISym gauge and tmQCD fermion action) allows to perform
dynamical simulations with Ny = 2 at pion masses smaller then 300 MeV starting from a lattice
spacing a~ 0.1 fm, allowing matching with xPT, and simulation with N = 2+ 1+ 1 flavours are
just starting.

In many cases it has been shown that the renormalization properties of local operators related
to very important phenomenological quantities, is continuum like.

Although presently not all aspects of tmQCD are fully investigated, tmQCD is an attractive and
powerful discretization of lattice QCD, and it certainly belongs to the pool of well founded fermion
actions that ought to be used to control the continuum limit of physical quantities of interest.
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