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1. Introduction

Most everyone is now familiar with the importance of accounting for chiral nonanalytic be-
havior in the quark-mass extrapolation of physical observables. The (pseudo) Goldstone bosons
associated with dynamical chiral symmetry breaking in QCD couple strongly and give rise to a
quark-mass dependence of hadron observables in which significant curvature is usually encoun-
tered in approaching the physical regime. The Adelaide Group has played a leading role in em-
phasizing the role of this physics [1] and establishing new approximation schemes to enable the
extrapolation of today’s lattice QCD results [2, 3].

The established, model-independent approach to chiral effective field theory is that of power
counting, the foundation of chiral perturbation theory (χPT). However, this requires one to work in
a regime of pion mass where the next term in the truncated series expansion makes a contribution
that is negligible. As there is no attempt to model the higher-order terms of the chiral expansion,
one simply obtains the wrong answer if one works outside thisregion. Knowledge of the power
counting regime (PCR), where neglected higher-order termsare truly small, is as important as the
chiral expansion itself.

Approximation schemes play a significant role in modern lattice QCD simulations. Consider
for example the calculation of all-to-all propagators [4],where the most important low-lying eigen-
modes of the Dirac operator are treated exactly in the inversion process. Having treated the dom-
inant contributions precisely, the remainder of the matrixinverse is approximated using stochastic
estimator techniques. The FRR approach toχEFT also has these characteristic features. Just as
the low-lying eigenmodes are treated exactly, so is the chiral regime of the chiral expansion. FRR
χEFT is mathematically equivalent to standardχPT to the finite order one is working.1 Having
treated the dominant contributions precisely, the remainder of the chiral expansion is approximated
using FRR-induced resummation techniques.

Because terms of the chiral expansion beyond the finite ordercalculated are treated in an ap-
proximate manner, FRRχEFT is often regarded as a model. In the lattice community, models are
usually eschewed at all costs, but the costs are high. Most chiral extrapolations presented this year
at Lattice ’05, are still of the most naive linear or polynomial form. Those performing extrapola-
tions with traditionalχPT are performing the extrapolations from well outside the PCR. The most
common signature of this is that when higher-order terms arecalculated, they are almost always
found to be large, even in the favorable meson sector [5]. If one was working in the PCR to begin
with, then the next order term of the expansion is small by definition! The reluctance to quantita-
tively determine the PCR undermines the integrity and credibility of lattice QCD predictions.

There continues to be a reluctant but growing recognition that some form of resummation of
the chiral expansion is necessary in order to make contact with lattice simulation results of full
QCD. The resummation of the chiral expansion induced through the introduction of a finite-range
cutoff in the momentum-integrals of meson-loop diagrams isperhaps the best known resummation
method [1, 2, 3]. Taylor expansions of FRR fits to lattice QCD results for magnetic moments
indicate that terms tom26

π are required to reach the first lattice data point atm2
π = 0.2 GeV2 [6].

Given the astronomical number of low energy constants to be determined if such calculations were
even possible inχPT, one must question if this really is the interesting physics.

1A survey of the literature reviewingχEFT illustrates that most practitioners are unaware of thisfact.
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As we will demonstrate in the following, the quark masses accessible with today’s algorithms
and supercomputers lie well outside the regime of baryonχPT in its standard form. This situation
is unlikely to change significantly until it becomes possible to directly simulate QCD on the lattice
within twice the squared physical mass of the pion and with suitably large lattice volumes. Still,
one might wonder if the lattice techniques that would allow simulations at light masses within 2m2

π ,
might also allow a calculation directly at the physical pionmass, obliterating the chiral extrapola-
tion problem altogether.

2. FRR χEFT is not a model in the PCR

To demonstrate that FRRχEFT is mathematically equivalent toχPT to the order calculated
and alleviate the myth that the FRRχEFT approach is simply a model, we review the process of
renormalisation in a minimal subtraction scheme and in FRRχEFT. To leading one-loop order

MN = a0 + a2m2
π + χπ Iπ , (2.1)

whereχπ = −3g2
A/(32π f 2

π ) is the LNA coefficient of the nucleon mass expansion, andIπ denotes
the relevant loop integral. In the heavy baryon limit, this integral over pion momentum is given by

Iπ =
2
π

∫ ∞

0
dk

k4

k2 + m2
π

. (2.2)

This integral suffers from a cubic divergence for large momentum. The infrared behavior of this
integral gives the leading nonanalytic correction to the nucleon mass. This arises from the pole
in the pion propagator at complex momentumk = imπ and will be determined independent of
how the ultraviolet behavior of the integral is treated. Rearranging Eq. (2.2) we see that the pole
contribution can be isolated from the divergent part

Iπ =
2
π

∫ ∞

0
dk

(

k2
−m2

π
)

+
2
π

∫ ∞

0
dk

m4
π

k2+ m2
π

. (2.3)

The final term converges and providesm3
π . In the most basic form of renormalization we could

simply imagine absorbing the infinite contributions arising from the first term in Eq. (2.3) into a
redefinition of the coefficientsa0 anda2 in Eq. (2.1). This solution is simply a minimal subtraction
scheme and the renormalized expansion can be given without making reference to an explicit scale,

MN = c0 + c2m2
π + χπm3

π , (2.4)

with the renormalized coefficients defined by

c0 = a0 + χπ
2
π

∫ ∞

0
dk k2 , c2 = a2− χπ

2
π

∫ ∞

0
dk . (2.5)

Equation (2.4) therefore encodes the complete quark mass expansion of the nucleon mass toO(m3
π).

This result will be precisely equivalent to any form of minimal subtraction scheme, where all the
ultraviolet behavior is absorbed into the two leading coefficients of the expansion. Such a minimal
subtraction scheme is characteristic of the commonly implemented dimensional regularization.
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We now describe the chiral expansion within finite-range regularization, where the cut-off
scale remains explicit. In particular, we highlight the mathematical equivalence of FRR and di-
mensional regularization in the low energy regime. We introduce a functional cutoff,u(k), defined
such that the loop integral is ultraviolet finite,

Iπ =
2
π

∫ ∞

0
dk

k4 u2(k)
k2 + m2

π
. (2.6)

To preserve the infrared behavior of the loop integral, the regulator is defined to be unity ask → 0.
For demonstrative purposes, we choose a dipole regulatoru(k) = (1+ k2/Λ2)−2, giving

IDIP
π =

Λ5(m2
π +4mπΛ+ Λ2)

16(mπ + Λ)4 ∼
Λ3

16
−

5Λ
16

m2
π + m3

π −
35

16Λ
m4

π + . . . , (2.7)

The first few terms of the Taylor series expansion, as shown, provide the relevant renormalisation
of the low-energy terms. The renormalized expansion in FRR is therefore precisely equivalent to
Eq. (2.4) up toO(m3

π) where the leading renormalized coefficients are given by

c0 = a0 + χπ
Λ3

16
, c2 = a2− χπ

5Λ
16

. (2.8)

As a0 anda2 are fit parameters, the valueΛ takes is irrelevant and plays no role in the expansion
to the order one is working; in this casem3

π . Hence the suggestion, for example, that infrared
regularization is somehow less model dependent than FRR is false and misleading. Within the
PCR ofχPT there is no physics in the regulator.

It is straight forward to extend this procedure to next-to-leading nonanalytic order, explicitly
including all terms up tom2

q ∼ m4
π . Most importantly, there are nonanalytic contributions oforder

m4
π logmπ arising from the∆-baryon and tadpole loop contributions. Details may be found in [1, 2].

3. Power-counting regime (PCR)

The PCR is the regime in which neglected higher-order terms of the standard expansion of
χPT are small, becausemπ is a small number raised to a high power. Since the chiral expansion
of χPT is truncated with no attempt to estimate the contributionof higher-order terms, one simply
obtains the wrong answer if one works outside the PCR.

As discussed in detail surrounding Eq. (2.8), the FRR chiralexpansion is mathematically
equivalent to that ofχPT to the finite order one is working. In other words, these terms of the
FRR expansion are independent of the regulator parameter,Λ. Thus FRRχEFT can be used to de-
termine the power-counting regime by varyingΛ and identifying the regime in pion mass in which
the results are invariant to some level of precision.

Fig. 1 illustrates the fourth-order chiral expansion for various dipole regulator parametersΛ.
Since the expansion to fourth order is automatically independent ofΛ, the observed changes in
the curves are simply a reflection of the changes in terms beyond fourth order. Fig. 2 displays the
relative error between the two extremal regularization scales for the left (solid) and right (dashed)
panels of Fig. 1. The regime where the curves agree within onepercent ismπ ≤ 180 MeV extending
only 40 MeV beyond the physical mass. While this is excellentnews for understanding experimen-
tal results within chiral perturbation theory, it also illustrates that today’s naive application ofχPT
to the chiral extrapolation problem in lattice QCD is inappropriate.
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Figure 1: With the low-energy parametersc0, c2 andc4 fixed to those obtained by the fit to lattice data with
Λ = 0.8 (left) and the minimal subtraction limitΛ → ∞ (right), the chiral expansion is shown for various
values of the dipole regulator scale,Λ = 0.5, 0.8, 1.1, 2.0 and∞ GeV.

Figure 2: (left) For fixed low-energy coefficientsc0, c2 andc4, the relative difference in the nucleon mass
expansion for two extremal regularization scales, whereδMN = MN(Λ = ∞)−MN(Λ = 0.5). The solid
and dashed curves correspond to the differences displayed in the left and right-hand panels of Fig. 1 where
theci are determined with a dipole of scaleΛ = 0.8 and∞ GeV, respectively. (right) Extrapolation of CP-
PACS collaboration simulation results [7] to the chiral limit using finite-range regularization [2]. Differences
between the illustrated dipole, monopole, Gaussian and theta-function regulators cannot be resolved on this
scale. The one-standard deviation error bound for the dipole extrapolation is also illustrated.

4. FRR χEFT as a solution to the chiral extrapolation problem.

To investigate the extent to which various regulators provide a model-independent estimator
for the sum of higher-order terms of the chiral expansion, beyond the finite order calculated, the
finite-range regulatoru(k) is taken to be either a sharp theta-function cut-off, a dipole, a monopole
or finally a Gaussian. These regulators have very different shapes, with the only common feature
being that they suppress the integrand for momenta greater thanΛ. Figure 2 (right) displays the
extrapolation [2] of full QCD simulation results of the nucleon mass from the CP-PACS collabora-
tion [7] using FRRχEFT to fourth order in the expansion;i.e. to orderm4

π logmπ . The curves are
indistinguishable and produce physical nucleon masses which differ by less than 0.1%.

The astonishing discovery in FRR chiral effective field theory, is that the term-by-term details
of the higher-order chiral expansion are largely irrelevant in describing the chiral extrapolation of
simulation results. The coefficients of the higher-order terms (m5

π and beyond) appearing in the
FRR expressions differ significantly, yet the curves of Fig.2 (right) are indistinguishable. Given
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the level of agreement between the curves associated with different regulators, and the fact that
the lattice results are described perfectly, it is sufficient to approximate the remainder of the chiral
expansion in terms of a single parameter,Λ.

5. Summary

So why does FRRχEFT work? The essential physics is that loop integrals vanish as the quark
masses grow large. Exactly how zero is approached is governed by the regulator parameter,Λ, and
in most casesΛ is constrained by lattice QCD simulation results. The contribution of any individual
higher-order term is largely irrelevant. The only thing that really counts is that there are other terms
that enter to ensure the sum of all terms of the loop integral approaches zero, in accord with what
is observed in lattice QCD calculations. Of course, this beautiful feature of FRR expansions would
be lost if one were to truncate the expansion at any finite order. Resummation of chiral effective
field theory is essential to solving the chiral extrapolation problem.

The finite-range regularisation (FRR) approach to chiral effective field theory (χEFT) provides
an approximation scheme that connectstoday’s lattice simulation results to the physical world. It
has been successfully applied to describe partially-quenched simulation results of the rho meson
mass in a unified analysis incorporating both finite volume and finite lattice spacing artifacts [8].
The CSSM lattice collaboration has completed extensive simulations of baryon electromagnetic
form factors. An associated quenched FRRχEFT analysis of the magnetic moments correcting
finite-volume and quenched artifacts has led to the most precise determination of the nucleon’s
strange magnetic moment [9].
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