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1. Introduction

Most everyone is now familiar with the importance of accamtfor chiral nonanalytic be-
havior in the quark-mass extrapolation of physical obdaesm The (pseudo) Goldstone bosons
associated with dynamical chiral symmetry breaking in Q@Dpte strongly and give rise to a
guark-mass dependence of hadron observables in whicHis@gricurvature is usually encoun-
tered in approaching the physical regime. The Adelaide Gimas played a leading role in em-
phasizing the role of this physics [1] and establishing nppreximation schemes to enable the
extrapolation of today’s lattice QCD results [2, 3].

The established, model-independent approach to chirdtefé field theory is that of power
counting, the foundation of chiral perturbation theoxy?). However, this requires one to work in
a regime of pion mass where the next term in the truncatedsserpansion makes a contribution
that is negligible. As there is no attempt to model the higireler terms of the chiral expansion,
one simply obtains the wrong answer if one works outside réggon. Knowledge of the power
counting regime (PCR), where neglected higher-order temmagruly small, is as important as the
chiral expansion itself.

Approximation schemes play a significant role in moderndatQCD simulations. Consider
for example the calculation of all-to-all propagators [#here the most important low-lying eigen-
modes of the Dirac operator are treated exactly in the irmensrocess. Having treated the dom-
inant contributions precisely, the remainder of the mdtmiserse is approximated using stochastic
estimator techniques. The FRR approachyEFT also has these characteristic features. Just as
the low-lying eigenmodes are treated exactly, so is theathegime of the chiral expansion. FRR
XEFT is mathematically equivalent to standfBT to the finite order one is working.Having
treated the dominant contributions precisely, the remeinfithe chiral expansion is approximated
using FRR-induced resummation techniques.

Because terms of the chiral expansion beyond the finite @maleulated are treated in an ap-
proximate manner, FRREFT is often regarded as a model. In the lattice communityefsoare
usually eschewed at all costs, but the costs are high. Mastl @xtrapolations presented this year
at Lattice '05, are still of the most naive linear or polynairiorm. Those performing extrapola-
tions with traditionalyPT are performing the extrapolations from well outside tld&RPThe most
common signature of this is that when higher-order termscaleulated, they are almost always
found to be large, even in the favorable meson sector [5]ndfwas working in the PCR to begin
with, then the next order term of the expansion is small bynitafn! The reluctance to quantita-
tively determine the PCR undermines the integrity and titi of lattice QCD predictions.

There continues to be a reluctant but growing recognitiat some form of resummation of
the chiral expansion is necessary in order to make contdbt lattice simulation results of full
QCD. The resummation of the chiral expansion induced thrdbg introduction of a finite-range
cutoff in the momentum-integrals of meson-loop diagranpeihaps the best known resummation
method [1, 2, 3]. Taylor expansions of FRR fits to lattice Q@3ults for magnetic moments
indicate that terms ta?® are required to reach the first lattice data pointrdt= 0.2 Ge\? [6].
Given the astronomical number of low energy constants teeberchined if such calculations were
even possible iryPT, one must question if this really is the interesting ptysi

LA survey of the literature reviewingEFT illustrates that most practitioners are unaware offtis
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As we will demonstrate in the following, the quark masse®asible with today’s algorithms
and supercomputers lie well outside the regime of barnyBii in its standard form. This situation
is unlikely to change significantly until it becomes possitd directly simulate QCD on the lattice
within twice the squared physical mass of the pion and wittably large lattice volumes. Still,
one might wonder if the lattice techniques that would allowations at light masses withim,
might also allow a calculation directly at the physical pioass, obliterating the chiral extrapola-
tion problem altogether.

2. FRR xEFT isnot amodel in the PCR

To demonstrate that FRREFT is mathematically equivalent ppPT to the order calculated
and alleviate the myth that the FRFEEFT approach is simply a model, we review the process of
renormalisation in a minimal subtraction scheme and in BfERT. To leading one-loop order

My = 89 + 8N+ Xrl, (2.1)

wherex,; = —3g3/(32mf2) is the LNA coefficient of the nucleon mass expansion, gndenotes
the relevant loop integral. In the heavy baryon limit, tlitegral over pion momentum is given by

|n:7—21/0 dkﬁ. 2.2)
This integral suffers from a cubic divergence for large motam. The infrared behavior of this
integral gives the leading nonanalytic correction to theleon mass. This arises from the pole
in the pion propagator at complex momentkra:= im; and will be determined independent of
how the ultraviolet behavior of the integral is treated. Raaging Eq. (2.2) we see that the pole
contribution can be isolated from the divergent part

2 2 o
'"_71/0 dk(k—nﬁ)+7—T/() e 2.3)

The final term converges and provides. In the most basic form of renormalization we could
simply imagine absorbing the infinite contributions anisfinom the first term in Eq. (2.3) into a

redefinition of the coefficienta; anda, in Eq. (2.1). This solution is simply a minimal subtraction
scheme and the renormalized expansion can be given withakihmreference to an explicit scale,

M = Co+ CoM+ XniMy, (2.4)
with the renormalized coefficients defined by
2 00 2 2 [}
=20+ Xy | OKIE, Co=ap Xuor [ dk (2.5)
T.Jo mTJo

Equation (2.4) therefore encodes the complete quark masssion of the nucleon massams,).
This result will be precisely equivalent to any form of mirdhsubtraction scheme, where all the
ultraviolet behavior is absorbed into the two leading cogdfits of the expansion. Such a minimal
subtraction scheme is characteristic of the commonly impleted dimensional regularization.
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We now describe the chiral expansion within finite-rangeutaggzation, where the cut-off
scale remains explicit. In particular, we highlight the heahatical equivalence of FRR and di-
mensional regularization in the low energy regime. We thtie a functional cutofii(k), defined
such that the loop integral is ultraviolet finite,

2 [ kKHA(K)
'”_71/0 K e 2.6)
To preserve the infrared behavior of the loop integral, dwilator is defined to be unity &s— 0.
For demonstrative purposes, we choose a dipole regulétde= (1+k?/A?)~2, giving

|DIP _ N3G+ Ama/\ + A?) N N N o 3 35

& 16(my;+ A)* 16 16 " 16A
The first few terms of the Taylor series expansion, as shovavjge the relevant renormalisation
of the low-energy terms. The renormalized expansion in FiRiRerefore precisely equivalent to
Eq. (2.4) up tog(m3,) where the leading renormalized coefficients are given by

N3 5A
Co=2+Xmyg: C2= 8~ Xy (2.8)

mi4 .. (2.7)

As ap anday are fit parameters, the valdetakes is irrelevant and plays no role in the expansion
to the order one is working; in this case’. Hence the suggestion, for example, that infrared
regularization is somehow less model dependent than FR&se &nd misleading. Within the
PCR of xPT there is no physics in the regulator.

It is straight forward to extend this procedure to nexteaeding nonanalytic order, explicitly
including all terms up tmﬁ ~ mf. Most importantly, there are nonanalytic contributionsoafer
mf-logmy; arising from theA-baryon and tadpole loop contributions. Details may be daiari1, 2].

3. Power-counting regime (PCR)

The PCR is the regime in which neglected higher-order teriiheostandard expansion of
xPT are small, because,; is a small number raised to a high power. Since the chiralresipa
of xPT is truncated with no attempt to estimate the contributibnigher-order terms, one simply
obtains the wrong answer if one works outside the PCR.

As discussed in detail surrounding Eq. (2.8), the FRR chésgdansion is mathematically
equivalent to that of(PT to the finite order one is working. In other words, thesenteof the
FRR expansion are independent of the regulator paramnfetdtius FRRYEFT can be used to de-
termine the power-counting regime by varyifgand identifying the regime in pion mass in which
the results are invariant to some level of precision.

Fig. 1 illustrates the fourth-order chiral expansion forieas dipole regulator parametefts
Since the expansion to fourth order is automatically indelpat of/\, the observed changes in
the curves are simply a reflection of the changes in termsraefaurth order. Fig. 2 displays the
relative error between the two extremal regularizatiodescor the left (solid) and right (dashed)
panels of Fig. 1. The regime where the curves agree withirpereent ign; < 180 MeV extending
only 40 MeV beyond the physical mass. While this is excellews for understanding experimen-
tal results within chiral perturbation theory, it also stuates that today’s naive application)d®T
to the chiral extrapolation problem in lattice QCD is inaggmiate.
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Figure 1: With the low-energy parametecs, c; andc, fixed to those obtained by the fit to lattice data with
N\ = 0.8 (left) and the minimal subtraction limit — oo (right), the chiral expansion is shown for various
values of the dipole regulator scale= 0.5, 0.8, 1.1, 2.0 ande GeV.
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Figure 2: (left) For fixed low-energy coefficienty, ¢, andcy, the relative difference in the nucleon mass
expansion for two extremal regularization scales, whEvk = Mn (A = ©) — My(A = 0.5). The solid
and dashed curves correspond to the differences displaytbe ieft and right-hand panels of Fig. 1 where
thec; are determined with a dipole of scale= 0.8 andeo GeV, respectively. (right) Extrapolation of CP-
PACS collaboration simulation results [7] to the chiralilimsing finite-range regularization [2]. Differences
between the illustrated dipole, monopole, Gaussian and-fla@ction regulators cannot be resolved on this
scale. The one-standard deviation error bound for the digxtrapolation is also illustrated.

4. FRR xEFT asa solution to the chiral extrapolation problem.

To investigate the extent to which various regulators mleva model-independent estimator
for the sum of higher-order terms of the chiral expansion, beyond thigefiorder calculated, the
finite-range regulaton(k) is taken to be either a sharp theta-function cut-off, a éipalmonopole
or finally a Gaussian. These regulators have very diffedeapas, with the only common feature
being that they suppress the integrand for momenta gredear\t Figure 2 (right) displays the
extrapolation [2] of full QCD simulation results of the naoh mass from the CP-PACS collabora-
tion [7] using FRRYEFT to fourth order in the expansione. to ordernt;logm;. The curves are
indistinguishable and produce physical nucleon masseshwdiffer by less than 0.1%.

The astonishing discovery in FRR chiral effective field ttyed that the term-by-term details
of the higher-order chiral expansion are largely irrelévardescribing the chiral extrapolation of
simulation results. The coefficients of the higher-ordemte [, and beyond) appearing in the
FRR expressions differ significantly, yet the curves of Rigright) are indistinguishable. Given
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the level of agreement between the curves associated Witradit regulators, and the fact that
the lattice results are described perfectly, it is sufficterapproximate the remainder of the chiral
expansion in terms of a single parameter,

5. Summary

So why does FRRREFT work? The essential physics is that loop integrals Veassthe quark
masses grow large. Exactly how zero is approached is gavémynehe regulator parametek, and
in most cased\ is constrained by lattice QCD simulation results. The dbation of any individual
higher-order term is largely irrelevant. The only thingttheally counts is that there are other terms
that enter to ensure the sum of all terms of the loop integrpt@aches zero, in accord with what
is observed in lattice QCD calculations. Of course, thisibigd feature of FRR expansions would
be lost if one were to truncate the expansion at any finiteroirdesummation of chiral effective
field theory is essential to solving the chiral extrapolatwoblem.

The finite-range regularisation (FRR) approach to chirfglative field theory EFT) provides
an approximation scheme that conndotday’s lattice simulation results to the physical world. It
has been successfully applied to describe partially-dueshsimulation results of the rho meson
mass in a unified analysis incorporating both finite volume fanite lattice spacing artifacts [8].
The CSSM lattice collaboration has completed extensiveilsitions of baryon electromagnetic
form factors. An associated quenched FRRFT analysis of the magnetic moments correcting
finite-volume and quenched artifacts has led to the mostiggatetermination of the nucleon’s
strange magnetic moment [9].
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