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parton distributions are well explored experimentally, providing clear tests of lattice calculations,

and the lack of experimental data for more general cases provides opportunities for genuine pre-

dictions and for guiding experiment. We present results from hybrid calculations with improved

staggered (Asqtad) sea quarks and domain wall valence quarks at pion masses down to 350 MeV.
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1. Introduction

The discovery of generalized parton distributions (GPDs) (see [1] for the pioneering articles
and [2] for recent comprehensive reviews) for the characterization of both exclusive and inclusive
reactions has stirred new interest in both experimentalists and theoreticians. For the first time it was
possible not only to describe seemingly unrelated processes in terms of a single set of functions
characterizing a hadron, but also to incorporate information that was not available before. The
ability to compute the total quark contribution to the nucleon spin [3] plays on important role in
resolving the spin crisis.

These developments provide an ideal opportunity for contemporary lattice QCD. While these
calculations are still limited to quark masses heavier than in nature they can provide invaluable
qualitative insight into the mechanisms of QCD. The pioneering lattice works on this field were
published simultaneously by the QCDSF [4] and LHPC [5] collaborations. Already these early
papers are playing an important role in phenomenology [6].

Later lattice investigations have unraveled important information on the transverse structure
of the nucleon [7], polarized processes [8] and the tensor structure of GPDs [9]. The role of lattice
QCD is of particular importance in this young field since the GPDs are inherently more complicated
than form factors or parton distributions alone. Several of these functions can only be determined
from lattice calculations and are not directly accessible to experiments.

This paper focuses on the application of hybrid lattice calculations [10] to the lowest moments
of the GPDs. It is organized as follows. After an introduction to the parameterization of GPDs
in section 2, we outline the current status of our hybrid calculations in section 3. We present the
preliminary results from our calculations in section 5 which covers the electromagnetic form factors
and the nucleon energy-momentum tensor. In the forward limit the GPDs reduce to the moments
of forward parton-distributions for which a plethora of detailed experimental data is available. For
this reason, we discuss this case in more detail in section 4. Finally, we present an outlook to the
analysis of form factors at large momentum transfer in section 6. We close with our plans for future
calculations to complete our program in section 7.

2. Generalized parton distributions

In the following, we focus on the case of a nucleon. Naturally, GPDs can be defined for all
other hadrons as well. For the case of the pion, see [11] in these proceedings. Generalized parton
distributions are defined by the nucleon matrix element of an operator that creates and annihilates
quarks separated by a given distance on the light cone:

p̄
��� dz �

2π
ei p̄ � z ��� p �
	 ψ̄ �
� z ��� 2 � Γψ � z ��� 2 ��	 p � (2.1)

with p being the momentum of the incoming, and p � being the momentum of the outgoing nucleon.
The average nucleon momentum is p̄ � 1 � 2 � p ��� p � . These matrix elements can be parameterized
by functions depending on three kinematic variables, the average longitudinal momentum fraction,
x, the skewness, ξ , and the total spacelike virtual momentum transfer, Q2 � t ��� p � � p � 2. Addi-
tionally, the GPDs implicitly depend also on a renormalization scale, µ 2. This scale fixes the scale
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Γ Function Meaning

γ µ H � x � ξ � t ��� E � x � ξ � t � Spin-independent
γ5γ µ H̃ � x � ξ � t ��� Ẽ � x � ξ � t � Spin-dependent

σ ρµγν HT � x � ξ � t � , ET � x � ξ � t � , Transverse
H̃T � x � ξ � t � , ẼT � x � ξ � t �

Table 1: List of fermion GPDs for the nucleon.

of the struck quark when using GPDs in a factorization scheme. Depending on the Dirac structure,
Γ, in Eq. (2.1) there are in total eight GPD functions. These functions are summarized in table 1.

Since we cannot compute non-local matrix elements in the Euclidean regime where lattice cal-
culations are performed, we have to compute moments with respect to the longitudinal momentum
fraction, x. These moments are obtained by performing a light-cone operator product expansion.
The resulting moments will then be polynomials in � 2ξ � 2. The coefficient functions are the so-
called generalized form factors (GFFs). In this paper, we restrict ourselves to moments as high as
the energy-momentum tensor of QCD. The parameterization takes on the following form:

�
dxH � x � ξ � t ��� A10 � t ��� F1 � t ��� �

dxE � x � ξ � t � � B10 � t ��� F2 � t ��� (2.2)

�
dxxH � x � ξ � t ��� A20 � t ��� � 2ξ � 2C2 � t ��� �

dxxE � x � ξ � t ��� B20 � t � � � 2ξ � 2C2 � t ��� (2.3)

The zeroth moment corresponds to the regular electromagnetic form factors, while the first moment
corresponds to the energy-momentum tensor. Furthermore, we restrict ourselves to the flavor com-
bination up minus down since in this case the flavor-singlet parts involving disconnected diagrams
cancel due to isospin symmetry.

3. Hybrid lattice calculations

The basic shortcoming of most currently employed lattice fermion actions is their enormous
cost which makes calculations with sufficiently light sea quarks prohibitively expensive. The prin-
cipal idea behind hybrid calculation consists of using different types of fermion actions for the sea
quarks — the virtual quark and anti-quark pairs created from loops from the gluon propagator —
and the valence quarks which connect to the source and the sink.

In the present work, we use Asqtad fermions for the sea quarks from configurations generated
by the MILC collaboration. We then use domain wall fermions with an exact lattice chiral symme-
try for the valence quarks. The resulting lattice theory should become a valid description of the full
theory in the continuum limit provided this limit exists. These simulations extend the calculations
we have already reported on in [10]. The current status of our lattice simulations is summarized in
table 2. All working points are at a constant lattice spacing corresponding to a � 1 � 1 � 588 GeV.

4. Moments of parton distributions

The lattice calculations of low moments of the nucleon parton distributions play multiple roles
in the effort to understand the non-perturbative structure of hadrons in QCD. First, the lowest mo-
ments of the nucleon’s parton distributions are interesting observables reflecting that the quark spin
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Volume Ω Configs. � amq � Asqtad mPS / MeV

203 � 32 425 0 � 050 790 � 2 �
350 0 � 040 693 � 3 �
564 0 � 030 594 � 2 �
486 0 � 020 492 � 2 �
655 0 � 010 354 � 2 �

283 � 32 271 0 � 010 352 � 1 �
Table 2: Summary of our working points and statistics for our hybrid calculations.

provides only a small fraction of the nucleon’s spin and that only a small portion of the nucleon’s
momentum is carried by the quarks. Quark orbital motion and gluon contributions must account
for the missing nucleon spin, and additionally the gluons must provide the remaining momentum
within the nucleon. Therefore reliable non-perturbative QCD calculations of the moments of parton
distributions are essential to the theoretical effort to understand nucleon structure.

Additionally the lattice calculation of moments of nucleon parton distributions will provide a
benchmark test for the calculation of other hadronic observables because the calculations of mo-
ments can be compared directly with the corresponding experimental measurements of the nucleon.
As lattice calculations are performed at light enough quark masses that controlled quantitative com-
parison with experimental results is achieved, then we will have confidence in the calculation of
other hadronic matrix elements which may be poorly determined by experiment. As an example,
the moments of generalized parton distributions or the large Q2 limit of nucleon form factors dis-
cussed in Sections 5 and 6 will require varying levels of difficulty to measurement experimentally
and the successful calculation of moments of ordinary parton distributions will allow for genuine
predictions from lattice calculations for these and other observables.

Lattice details The moments of parton distributions are determined by calculating matrix ele-
ments of the twist two operators in lattice QCD. For example the moments of the unpolarized and
longitudinally polarized distributions are given by

� xn � 1 � q p
�
µ1 ����� pµn � � 1

2
� p � S 	 qiD

�
µ1 ����� iDµn � 1γ µn � q 	 p � S ���

� xn � 1 � ∆qS
�
µ1 ����� pµn � � 2

n � 1
� p � S 	 qiD

�
µ1 ����� iDµn � 1γ µn � γ5q 	 p � S ���

where the moments are defined as

� xn � 1 � q � � 1

� 1
dx xnq � x � � � 1

0
dx xn � q � x � � q � x � ���

� xn � 1 � ∆q � � 1

� 1
dx xn∆q � x � � � 1

0
dx xn � ∆q � x � � ∆q � x � ���

These moments are encoded in the generalized form factors discussed in Section 2 as

Aq
n0 � 0 � � � xn � 1 � q

Ãq
n0 � 0 � � � xn � 1 � ∆q �
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Figure 1: � 1 � ∆u � ∆d
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Figure 2: � 1 � δ u � δ d

Additionally the moments of the transversity distribution, labeled by δq in the following, can be
calculated with similar expressions. All the remaining details can be found in [12].

All but the most trivial moments must be renormalized at some scale. With the exception of the
axial coupling, all the moments discussed here are matched in the chiral limit to MS at µ � 2 GeV
using one-loop perturbation theory [13]. The one exception, the axial coupling, is renormalized
non-perturbatively in the chiral limit using the five dimensional domain wall conserved axial cur-
rent.

Figures 1 through 4 show the results from this calculation and from a previous calculation with
Wilson quarks [12]. With one exception the points reading from left to right denote the following:
point 1 is the experimental value, point 2 is the 3 � 5 fm domain wall calculation, points 3-6 and 8
are the 2 � 5 fm domain wall calculations, and points 7 and 9-10 are the 1 � 5 fm Wilson calculations.
The one exception is that Figure 2 lacks the experimental value but is otherwise identical.

Axial and tensor couplings As our calculations enter the chiral regime, the axial coupling is
a particularly good benchmark observable. Physically gA � � 1 � ∆u � ∆d represents the non-singlet
contribution of light quark spins to the nucleon spin. Furthermore it is well determined in neu-
tron β decay, and more importantly it has no disconnected diagrams and thus is unambiguously
calculable with current lattice calculations. Figure 1 illustrates our recent calculations of gA along
with our group’s previous calculations at heavier quark masses [12]. As mentioned earlier, the
renormalization constant is calculated non-perturbatively in the chiral limit and is determine to be
ZA � 1 � 0751 � 11 � . As Figure 1 illustrates very clearly, we are making significant progress in cal-
culating gA at the physical quark masses. A tentative calculation by our group to study the chiral
extrapolation of gA as a function of the pion mass is given in [14] and will be examined carefully in
an upcoming publication. Additionally, the axial coupling provides a good test of finite size effects
because previous calculations [15] have shown that gA is particularly sensitive to the finite size of
a calculation. Figure 1 shows our results for volumes of � 2 � 5 fm � 3 and � 3 � 5 fm � 3 at the lightest
quark mass indicating that finite size effects appear to be smaller than the statistical accuracy of
our calculations.

Our corresponding results for the non-singlet tensor charge, gT � � 1 � δu � δd , are shown in Fig-
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Figure 4: � x � u � d � � x � ∆u � ∆d

ure 2 at each of the same pion masses as in Figure 1. The most noteworthy observation is that the
discrepancy between the Wilson and domain wall results is greater than for the axial charge. Finite
size effects and lattice artifacts may account for the discrepancy, but as suggested in [16] renormal-
ization may also be a significant effect. A similar mismatch is observed for the momentum fraction
as well, and we plan to study the non-perturbative renormalization of these operators to investigate
the discrepancy.

Unpolarized and polarized momentum fractions Unlike the axial coupling, the momentum
fraction remains a challenge for contemporary lattice calculations. Simply put, nearly all lattice
calculations to date overestimate the momentum fraction, which represents the quark contribution
to the nucleon’s momentum. Hence lattice calculations do not yet seem to correctly account for
the sizable fraction of momentum carried by gluons in the chiral limit. Thus it appears that the
main obstacle in correctly determining the physical value of � x � is to calculate at sufficiently light
quark masses such that chiral perturbation theory can be used to reliably extrapolate to the physical
masses [17]. Figure 3 illustrates our groups progress toward this goal. In this figure we focus on the
non-singlet contribution, � x � u � d , to avoid complications arising from disconnected diagrams. The
issues involved in correctly matching the previous heavier Wilson quark calculations to the current
domain wall calculations were discussed earlier with regard to the tensor charge, and the same
comments apply here. It is worthwhile to note that, even though the lattice calculations at lighter
pion masses do not yet show any significant curvature, the lighter results do show a systematic shift
toward the experimental result.

Despite the challenges involved in � x � , it was noted in [18] that the ratio of unpolarized to lon-
gitudinally polarized momentum fractions yields an observable which appears to be less sensitive
to the issues which still plague � x � alone. In particular with a chiral action the renormalization of
operators which differ solely by an insertion of γ5 is identical. Hence the ratio � x � u � d � � x � ∆u � ∆d

requires no renormalization. Furthermore as illustrated in Figure 4 the finite size and pion mass
dependence appears to strongly cancel in this ratio as well.
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Figure 5: The electromagnetic form factors of the nucleon at small values of Q2.

5. Moments of generalized parton distributions

In the following, we only present numerical results from the lightest working point on the
283 � 32 lattice. Hence, these simulations correspond to a pion mass of mπ � 352 MeV. Further-
more, the results presented in this section have not yet been renormalized in the MS-scheme, but
in the lattice regularization of our action at the scale given in section 3. They are intended as a test
of our lattice technology and not to be compared directly to experimental data so far.

Our results for the electromagnetic form factors of the nucleon, F p-n
1 � t ��� Au-d

10 � t � and Fp-n
2 � t ���

Bu-d
10 � t � , are shown in figure 5.

The three generalized form factors appearing in the parameterization of the nucleon energy-
momentum tensor, cf. eq. (2.2), are shown in figure 6.

An important qualitative finding of [7] was that the transverse structure of the nucleon is
indeed not described properly by the assumption that the t-dependence factorizes from the x and ξ
dependence of a GPD. This ansatz has been made in several phenomenological studies and turned
out to be inaccurate. We reproduced a key result in figure 7 and find, again, that the transverse
shape of the nucleon becomes narrower as the longitudinal momentum fraction, x, increases.

6. Form factors at large momentum transfer

Motivation The isovector part of the electromagnetic form factors of the nucleon for momentum
transfers less than 1 GeV have already been discussed in section 5 and shown in figure 5. The
shaded bands are a dipole fit to the lattice data and consistent with the phenomenological notion
that the form factors generally follow the dipole form

GD � Q2 � ∝
�

1 � Q2

Λ2 � � 2

� Λ2 � 0 � 71 GeV2 (6.1)

in this range of momentum transfers. This can be seen directly from the simple parameterization
of the existing experimental data for Sachs form factors by J. J. Kelly [19]. In our normalization,
the Sachs form factors are determined by the Dirac and Pauli form factors as

GE � Q2 � � F1 � Q2 � � τF2 � Q2 ��� GM � Q2 ��� F1 � Q2 � � F2 � Q2 ��� τ � � Q2

4m2
N

� (6.2)
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0 0.2 0.4 0.6 0.8
-Q

2
 / GeV

2

0.25

0.5

0.75

1

1.25

Sc
al

ed
 G

FF
s

A
1

u-d
(-Q

2
)

A
20

u-d
(-Q

2
)

Figure 7: The comparison of the scaled GFFs A10
�
t � and A20

�
t � signaling the non-factorization of the

longitudinal and transverse momentum dependence.

P
o
S
(
L
A
T
2
0
0
5
)
0
5
6

056 / 8



Hadron structure with light dynamical quarks Wolfram Schroers

0 1 2 3 4 5 6

-Q
2
 (GeV)

2

0

1

2

3

4
(F

p 1 -
 F

n 1) 
/ G

D

0 1 2 3 4 5 6

-Q
2
 (GeV)

2

0

1

2

3

4

(F
p 2 -

 F
n 2) 

/ G
D

Figure 8: Experimental parameterizations of isovector F1 (Dirac) and F2 (Pauli) form factors. Dipole form
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Figure 9: Experimental parameterizations of isovector Sachs GE (electric) and GM (magnetic) form factors.
Dipole form factor GD has Λ2=0.71 GeV2 [19].

We can invert equation (6.2), form isovector combinations and, using the parameterization [19] and
its covariance matrix [20], produce curves derived from experimental data for direct comparison
with lattice isovector form factors. Figure 8 shows the 1 σ bands for the Dirac and Pauli form
factors. Figure 9 shows similar 1 σ bands for the Sachs electric and magnetic form factors.

While all experimental curves show some variation with Q2 relative to the dipole form, the
most intriguing feature is the apparent zero-crossing of Gp

E � Gn
E around � Q2 � 5 GeV2. This is

similar to the possible zero-crossing of Gp
E � Gp

M around � Q2 � 10 GeV2 as suggested by various
extrapolations of the data from recent polarization transfer experiments [21, 22, 23, 24, 25]. It
appears that by focusing on the isovector parts of form factors it may be possible for lattice cal-
culations to predict the vanishing of the electric form factor at lower Q2 than previously thought
possible. Thus, the purpose of this section is to estimate what level of statistics are required to
achieve a significant measurement of a negative electric form factor at � Q2 � 6 GeV2.

Another motivation for calculating form factors in the regime � Q2 � 1 GeV2 is to test the
predictions of perturbative QCD (pQCD) at asymptotically high Q2 [26, 27]. In pQCD, the nucleon
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form factors are expected to scale: F1 � Q � 4, F2 � Q � 6 as Q2 � ∞. So, it is easy to form scaling
ratios which should be roughly constant at higher momentum transfers. Ratios like Q2F2 � F1 and
GE � GM should scale but have not yet been observed to do so. Recently, it has been noted [28,
29] that the ratio F2 � F1 has an additional logarithmic factor: Q2F2 � F1 � log2 � Q2 � Λ2 � where Λ �
300 MeV seems to roughly restore scaling of experimental data in the range � Q2 � 2 – 6 GeV2.

A word of caution is in order with regards to apparent scaling of the experimental data having
its origins in pQCD scaling in the asymptotic regime. In a recent lattice calculation of the pion
electromagnetic form factor Fπ � Q2 � [30] in the same hybrid scheme as described in section 3,
scaling was observed for Fπ � Q2 � as predicted by pQCD. In the case of the pion, it is also possible
to compute the asymptotic normalization and the data did not yet agree with the pQCD prediction.
Thus, scaling alone is not sufficient to establish the reliability of pQCD calculations of nucleon
form factors.

Exploring higher Q2 on the lattice To estimate the computational costs of computing nucleon
electromagnetic form factors to � Q2 � 6 GeV2, we computed sequential propagators on 282 con-
figurations separated by 12 MILC HMD trajectories, at mPS � 594 � 2 � MeV, half of those listed in
table 2, for higher sink momenta �p � = (1,1,0), (1,1,1) and (2,0,0). For this study, we focused on
computing in the Breit frame ���p � � �	�p � as past experience has shown that computed form factors
have smaller statistical variance than other momentum combinations at the same Q2. Our results
for Fu � d

1 � Q2 � are shown in figure 10 and are consistent with dipole scaling over the entire range of
Q2.

In figure 11, we plot the relative error of F u � d
1 � Q2 � in the Breit frame. We fit the points to

several functional forms with three or less free parameters in order to extrapolate our results to
higher sink momenta. The polynomial curve shown was the best representation of the data we
found. This form is motivated by the following picture. F1 decreases as Q � 4 ∝ n � 4 in the Breit
frame. If the statistical noise in our matrix element construction is independent of the magnitude
of the sink momenta, then the relative error should increase as n4 which is consistent with our
calculation.
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Because we would like to establish whether a zero-crossing occurs around � Q2 � 5 GeV2 for
the isovector electric form factor, we would like to set a goal of achieving 30% relative errors up
to 6 GeV2. For �p � = (2,0,0), n2 = 4 and � Q2 � 4 � 15 GeV2 the relative error is 62%. Reducing the
relative error to 30% at this Q2 should therefore require four times the number of configurations,
two times more than our current dataset.

To reach 6 GeV2 requires a sink momenta of �p � = (2,2,0), n2 = 8 and our extrapolation predicts
we should find a relative error of 227% on our set of 282 configurations. To reduce this relative
error to 30% should require 57 times as many configurations, on the order of 200,000 MILC HMD
trajectories! Since it is unlikely that this ensemble will be extended by so many trajectories, achiev-
ing our goals will require some other technique to reduce the variance of matrix elements at higher
Q2.

Another important question is how does the relative error of the form factors depend on the
dynamical pion mass at fixed Q2. In figure 12 we show the relative error for F u � d

1 � Q2 � as a function
of the pion mass in the Breit frame at fixed sink momenta �p � = (1,0,0). Note that the box size
is held fixed in lattice units (L=20) and thus mPSL varies but always mPSL

� 4. As before, we
attempted to fit various functional forms to the data and the form which best fit the data is plotted.
In this case, we were unable to find any other functional form with three or fewer parameters
which could fit the data with any comparable accuracy. We do not currently have a good physical
motivation for this functional form except to note that the scale at which the divergence sets in is
approximately 250 MeV, comparable with the scale at which other chiral extrapolations of hadronic
matrix elements typically show substantial curvature. This figure clearly reiterates the need to
identify some other technique for reducing the variance of hadronic matrix elements at higher Q2.

7. Summary and outlook

We have demonstrated selected results for the structure of the nucleon at light quark masses
using our hybrid approach. We have focused on a specific sample at one working point of our sim-
ulations to demonstrate the qualitative behavior of the generalized form factors. The results are in
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Figure 12: Relative error of the isovector Dirac form factor vs. pion mass at fixed sink momentum.

qualitative agreement with previous findings and we did not encounter major problems during our
runs. We then focused on a direct comparison of several moments of the forward limit of parton
distributions to experiment. These results included our entire data set and the direct comparison to
experimental data has given quantitative agreement in several cases once appropriate chiral extrap-
olations have been considered. Finally, we have explored the possibility of exploring the regime of
larger virtual momentum transfers in the case of the nucleon form factors.

The encouraging results make us confident that the hybrid approach is indeed promising to
bridge the gap between current lattice data and the regime where chiral perturbation theory is
applicable. These results are therefore of great importance to the qualitative and quantitative un-
derstanding of hadronic matrix elements.

Before the advent of light dynamical overlap and domain-wall calculations we will provide
a complete analysis of selected quantities like the nucleon axial coupling [31], light hadron spec-
troscopy [32], and all accessible moments of generalized parton distributions [33].
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