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We study the manifestly exotic tetraquark D��

s0 �cus̄d̄� and the scalar tetraquark f0�udūd̄� in

SU(3)c anisotropic quenched lattice QCD. We adopt the O�a�-improved Wilson (clover) fermion

at β � 5�75 on 123
�96 with renormalized anisotropy as�at � 4, and investigate the correlator of

the four-quark (4Q) system, cus̄d̄, with various quark masses including the idealized SU(4) f case.

For f0�udūd̄� etc., we only consider connected diagrams at the quenched level, i.e., the tetraquark

f0�udūd̄� is identical with D��

s0 �cus̄d̄� in the idealized SU(4) f case. First, for comparison, we

study the lowest qq̄ scalar meson, and find that it has a large mass of about 1.37GeV after chiral

extrapolation, which corresponds to f 0�1370�. Second, we investigate the lowest 4Q state in the

spatial periodic boundary condition, and find that it is just a scattering state of two pseudoscalar

mesons, as is expected. Third, to extract spatially-localized 4Q resonances, we use the Hybrid

Boundary Condition (HBC) method, where anti-periodic and periodic boundary conditions are

imposed on quarks (c,u) and antiquarks (s̄,d̄), respectively. By applying the HBC on a finite-

volume lattice, the threshold of the two-meson scattering state is raised up, while the mass of a

compact 4Q resonance is almost unchanged. In HBC, we find a nontrivial 4Q resonance state

about 100 MeV below the two-meson threshold in some quark-mass region. Its chiral behavior

largely differs from a two-meson scattering state. The scalar tetraquark f0�udūd̄� is found to have

the mass of about 1.1GeV after chiral extrapolation, and seems to correspond to f0�980�. Then,

the manifestly exotic tetraquark D��s0 �cus̄d̄� would exist around 1GeV in the idealized SU(4) f

chiral limit. Finally, MEM analysis is applied to obtain the spectral function of the 4Q system.
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1. Introduction

The tetraquark [1-7] is an interesting subject in hadron physics. The tetraquark picture was first
proposed for scalar mesons [3]. Recently, charmed tetraquark candidates were discovered [1, 2].

1.1 Experimental discoveries of tetraquark candidates

In recent years, various candidates of multi-quark hadrons have been experimentally observed
[1, 2] and theoretically studied [4-9]. For instance, D�

s0(2317) [1], D�
s1(2460), X(3872) [2] and

Y(4260) are expected to be tetraquark states [5, 6] from the consideration of their mass, narrow
decay width and decay mode. As the unusual features of X(3872), its mass is rather close to the
threshold of D0�cū� and D̄0��uc̄�, and its decay width is very narrow as Γ � 2.3MeV (90 % C.L.).
These facts seem to indicate that X(3872) is a tetraquark [5] or a molecular state of D 0�cū� and
D̄0��uc̄� rather than an excited state of a cc̄ system [6]. Also, D�

s0(2317) is conjectured to be not
a simple meson of cs̄ but a tetraquark from its small mass and its narrow decay width. In fact,
simple quark-model assignment for D�

s0(2317) is cs̄�3P0�, but almost all theoretical predictions for
P-wave cs̄ states fail to reproduce its small mass [6, 10]. Furthermore, there is a puzzle in the decay
mode of D�

s0(2317): CLEO collaboration [1] shows that the dominant decay mode is D ��
s π0 and its

contribution is much larger than the radiative decay as
Γ�D�

s0 � D��
s γ�

Γ�D�
s0
�D��

s π0�
� 0�059� (1.1)

If D�
s0(2317) is isoscalar (I=0) such as cs̄, this decay pattern implies that the main decay mode

is isospin breaking process of O�e4� in QED, which is rather anomalous. To explain this decay
pattern, Terasaki proposed I � 1 possibility of D�

s0(2317) [7], which means the tetraquark picture
for D�

s0(2317) and leads to D��
s0 as the isospin partner.

Then, we examine manifestly exotic tetraquark D��
s0 �cus̄d̄� with C ��1, S ��1 and I3 ��1

in anisotropic quenched lattice QCD. In this paper, we mainly report the idealized SU(4) f case.

1.2 Tetraquarks in the light-quark sector

There are five 0�� isoscalar mesons below 2GeV: f0(400-1200), f0(980), f0(1370), f0(1500)
and f0(1710). Among them, f0(1370) is considered as the lowest qq̄ scalar meson in the quark
model [11]. For, in the quark model, the lowest qq̄ scalar meson is 3P0, and therefore it turns to be
rather heavy. [ f0(1500) and f0(1710) are expected to be the lowest scalar glueball or an ss̄ scalar
meson.] Then, what are the two light scalar mesons, f0(400-1200) and f0(980)? This is the “scalar
meson puzzle", which is unsolved even at present. As the possible answer, in 1977, Jaffe proposed
tetraquark (qqq̄q̄) assignment for low-lying scalar mesons such as f 0(980) and a0(980) [3].

Then, we examine the scalar tetraquark f0�udūd̄� in the light-quark sector in anisotropic
quenched lattice QCD. In this paper, we only consider connected diagrams at the quenched level.
Note here that, if only the connected diagram is taken account at the quenched level, the tetraquark
f0�udūd̄� is identical with D��

s0 �cus̄d̄� in the idealized SU(4) f case.

2. Lattice QCD

We investigate the manifestly exotic tetraquark D��
s0 �cus̄d̄� and the scalar tetraquark f0�udūd̄�

in anisotropic quenched lattice QCD mainly in the idealized SU(4) f case.
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2.1 Diquark-antidiquark-type interpolating field operator

For the tetraquark D��
s0 �cus̄d̄� with spin J � 0 and isospin I � 1, we adopt the diquark-

antidiquark-type (non-two-meson-type) interpolating field,

O� εabcεade�c
T
bCγ5uc��s̄dCγ5d̄T

e �� (2.1)

to extract the 4Q resonance rather than two-meson scattering states. Here, the roman indices de-
notes color indices, and C � γ4γ2 the charge conjugation matrix. In this diquark-antidiquark-type
operator, the overlap with two-meson scattering states is expected to be small. The energy of the
low-lying state is extracted from the temporal 4Q correlator G�t�� 1

V ∑�x�O�t��x�O†�0��0��, where
the total momentum of the 4Q system is projected to be zero. To reduce highly-excited-state com-
ponents, we use a spatially-extended source of Gaussian-type with ρ=0.4fm in the Coulomb gauge
[8, 12]. We impose the Dirichlet boundary condition in the temporal direction [9]. We analyze the
effective mass meff�t� obtained from the 4Q correlator G�t� as meff�t�� ln�G�t��G�t�1���

2.2 Anisotropic lattice QCD

To get detailed information on the temporal behavior of the 4Q correlator G�t�, we adopt
anisotropic lattice QCD with the standard plaquette action and the O�a�-improved Wilson (clover)
fermion at β � 2Nc�g2 � 5�75 on 123� 96 with renormalized anisotropy as�at � 4 [8, 12]. This
is anisotropic version of the Fermilab action [13]. The scale is set by the Sommer scale r �1

0 �

395MeV, which leads to the spatial/temporal lattice spacing as a�1
s � 1�10GeV (i.e., as � 0.18fm)

and a�1
t � 4�40GeV (i.e., at � 0.045fm). The spatial lattice size is L� 12as� 2�15fm. We use 1827

gauge configurations, which are picked up every 500 sweeps after the thermalization of 10,000
sweeps. On the happing parameter, we take κ=0.1210-0.1240 for light quarks and κ=0.1120 for
the real charm-quark mass. We summarize the lattice parameters and related quantities in Table 1.

Table 1: The lattice parameters and related quantities. They are almost the same as in Ref.[8].

β lattice size a�1
s a�1

t γG us ut κ
5.75 123�96 1.10GeV 4.40GeV 3.2552 0.7620 0.9871 0.1210(10)0.1240, 0.1120

2.3 Hybrid Boundary Condition (HBC) method

To extract low-lying 4Q resonances, we use the “hybrid boundary condition" (HBC) [8] where
we impose the the anti-periodic boundary condition for quarks (c, u) and the periodic boundary
condition for antiquarks (s̄� d̄), as shown in Table 2. By applying the HBC on a finite lattice with
L3, the two-meson threshold is raised up, while the mass of a compact 4Q resonance is almost
unchanged. Then, the 4Q resonance may become visible as a low-lying state in HBC, if it exists.

Table 2: The hybrid boundary condition (HBC) to raise up the threshold of two-meson scattering states.

c, u s̄, d̄ qq̄-meson 2-meson threshold tetraquark (qqq̄q̄)
PBC periodic periodic periodic m1�m2 periodic

HBC anti-periodic periodic anti-periodic ∑k�1�2

�
m2

k��p2
min periodic

070 / 3



P
o
S
(
L
A
T
2
0
0
5
)
0
7
0

Lattice QCD Evidence for Exotic Tetraquark Resonance Hideo Suganuma

 1.3

 1.4

 1.5

 1.6

 1.7

 0  0.2  0.4  0.6  0.8  1

qq scalar meson-Mqq [GeV]-

2mπ [GeV  ]2

Figure 1: The lowest mass Mqq̄ of the qq̄ scalar
meson plotted against m2

π . The qq̄ scalar meson
mass Mqq̄ is extracted from the connected diagram
in quenched lattice QCD.
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Figure 2: The effective mass plot of 4Q system in
PBC and HBC. The solid lines denote the plateau
of meff�t�, and the the dashed lines the two-meson
threshold. The Dirichlet boundary condition is
imposed in the temporal direction.

For a compact 4Q quasi-bound state of cus̄d̄, since it contains even number of quarks, it obeys
periodic boundary condition (PBC) in HBC, and therefore its energy in HBC is almost the same as
that in PBC [8]. For a two-meson scattering state, both mesons have non-zero relative momentum
�pmin � ��π

L ��π
L ��π

L �, i.e., 	�pmin	�



3π�L in HBC, while they can take zero relative momentum
�pmin � 0 in PBC. In fact, the two-meson threshold m1 �m2 (m1, m2: meson masses) in PBC is

raised up in HBC as Eth � ∑k�1�2

�
m2

k ��p2
min with 	�pmin	�



3π�L� 0�5GeV for L � 2�15fm.

3. Lattice QCD results for tetraquarks

First, for comparison, we calculate the qq̄ scalar meson mass in anisotropic quenched lattice
QCD. Here, we only consider connected diagrams. We show in Fig.1 the lowest qq̄ scalar meson
mass plotted against m2

π . Our quenched lattice QCD indicates that the lightest qq̄ scalar meson has
a large mass about 1.37 GeV after the chiral extrapolation. Thus, the lightest qq̄ scalar meson cor-
responds to f0�1370� or a0�1450�, which is consistent with the quark-model assignment for scalar
mesons. [Note that, if disconnected diagrams are dropped off, isoscalar qq̄ mesons degenerate
isovector qq̄ mesons in quenched QCD, e.g. mρ � mω and m� f0� � m�a0�.]

 0.5

 1
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 0  0.2  0.4  0.6  0.8  1

Lattice data (PBC)
two-meson threshold (PBC)

mπ [GeV  ]
2 2

M(4Q) [GeV]

Figure 3: The lowest energy M(4Q) of the 4Q
system in PBC plotted against m2

π . The dotted
curve denotes the two-meson threshold of 2mπ .
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Figure 4: The lowest energy M(4Q) of the 4Q
system in HBC v.s. m2

π . The dotted curve is the
two-meson threshold of

�
m2

π �3π2�L2 in HBC.
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Second, we investigate the 4Q system of cus̄d̄ with various quark masses in PBC and in HBC.
Here, we show the idealized SU(4) f case, where D��

s �cus̄d̄� is identical with f0�udūd̄� as far as
only connected diagrams is considered. Figure 2 shows the effective mass m eff�t� of cus̄d̄ (or udūd̄)
in PBC and in HBC for κ=0.1240. In PBC, the plateau of meff�t� agrees with the two-pseudoscalar-
meson threshold, i.e., 2mπ . As shown in Fig.3, the lowest energy of the 4Q system in PBC plotted
is just a π-π scattering state, as is expected. [Note that this lowest 4Q level is raised up in HBC,
while a compact 4Q resonance does is almost unchanged in HBC.]

Third, we analyze the lowest 4Q state in HBC. In HBC, there appears a plateau below the π-π
threshold by about 100MeV as shown in Fig.3. Figure 4 shows the lowest energy of the 4Q system
in HBC plotted against m2

π . Note that its chiral behavior is largely different from the π-π scattering
state. Thus, this 4Q state is considered to be a nontrivial 4Q resonance instead of a two-meson
scattering state. After the simple linear chiral extrapolation, the mass of the 4Q state is estimated to
be about 1.1GeV, which seems to correspond to f 0(980) or a0�980� in the light-quark scalar sector.
This also indicates that the manifestly exotic tetraquark D��

s0 �cus̄d̄� would exist around 1GeV in
the idealized SU(4) f chiral limit.

4. MEM analysis for point-point 4Q correlation

Finally, using the maximum entropy method (MEM) [14], we extract the spectral function
A�ω� from the temporal correlator G�t�, which satisfies

G�τ� �
� ∞

0
dωK�τ �ω�A�ω�� K�τ �ω�� e�τω �e��β�τ�ω

1�e�βω � β � Ntat � (4.1)

From the lattice data of the 4Q correlator G�t�, we obtain the spectral function A�ω� of the 4Q sys-
tem with MEM. At present, we perform the MEM analysis for point-source point-sink 4Q correlator
G�t� both in PBC and in HBC, although this correlator includes large excited-state contamination.
For the point-point correlator G�t�, the lowest-order default function m�ω� is calculated as

m�ω� �
4Nc

28Γ�5�Γ�6�π6 ω8� (4.2)

Unlike the previous section, we here use κ � 0�1240 for u, d, s-quarks, and κ � 0�1120 for c-quark,
and impose the periodic boundary condition in temporal direction. Figures 5 and 6 show the MEM
analysis for the 4Q correlator G�t� and the obtained spectral function A�ω� for the 4Q system.
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Figure 5: The 4Q corelator of point-source point-
sink correlator G�t� in PBC. The symbols denote
the lattice data. The solid curve is the temporal
correlator reconstructed by A�ω� in Fig.6.
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Figure 6: The spectral function A�ω� obtained
with MEM from the point-source point-sink 4Q
correlator in PBC.
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The lattice data of 4Q correlator G�t� can be well reconstructed with the spectral function A�ω� ob-
tained by MEM through Eq.(4.1). [In this point-point correlator G�t�, highly-excited contamination
is so large that low-lying structure of A�ω� cannot be seen clearly. To clarify the low-lying structure
of the 4Q spectrum, we are performing the MEM analysis for extended-source extended-sink 4Q
correlators, where excited-state components are reduced.]

5. Summary and conclusions

We have studied the manifestly exotic tetraquark D��
s0 �cus̄d̄� and the scalar tetraquark f0�udūd̄�

in SU(3)c anisotropic quenched lattice QCD mainly in the idealized SU(4) f case. First, we have
found that the lowest qq̄ scalar meson has a large mass of about 1.37GeV after chiral extrapolation,
which corresponds to f0�1370�. Second, we have found that the lowest 4Q state is just a scattering
state of two pseudoscalar mesons. Third, using the Hybrid Boundary Condition (HBC) method,
we have found a nontrivial 4Q resonance state whose chiral behavior is different from a two-meson
scattering state. The scalar tetraquark f0�udūd̄� is found to have the mass of about 1.1GeV after
chiral extrapolation, and seems to correspond to f 0�980�. Then, the manifestly exotic tetraquark
D��

s0 �cus̄d̄� is expected to exist around 1GeV in the idealized SU(4) f chiral limit.
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