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1. Introduction

Overlap fermions provide the opportunity to investigate QCD at small quark masses. Be-
ing computationally extremely expensive, no dynamical results on physically relevant lattices are
available yet. In this work, we present spectrum and quark mass results of a quenched study.
We calculate light and strange quark masses, and we check several predictions of quenched chiral
perturbation theory. Results for nucleon matrix elements are presented in [1].

2. Action, lattices and the scale

Our overlap operator is

D =

(

1− amq

2ρ

)

DN +mq, DN =
ρ
a

(

1+X
(

X†X
)−1/2

)

, (2.1)

with the Wilson kernel operatorX = DW − ρ
a . We use a polynomial approximation (see [2]) for

X
(

X†X
)−1/2

, the degree of which is adjusted properly to get an overall residual in the inversion
of the overlap better than 10−7 . The value ofρ is chosen to satisfy the requirements of low
condition number and good localisation properties. A way toimprove the condition number is the
exact treatment of the lowest eigenvalues. Our choice,ρ = 1.4, is a compromise between small
condition number and large localisation mass (i.e. we aim at the upper left hand corner in Fig. 1).
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Figure 1: Condition number and localisation
mass (1-norm) forβ = 8.45, 10 eigenvalues pro-
jected out.
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Figure 2: Quenched chiral fits tofπ .

We use the 1-loop tadpole improved Lüscher-Weisz gauge action [3].

S[U ] =
6
g2

[

c0 ∑
plaq

1
3

ReTr(1−Uplaq)+c1 ∑
rect

1
3

ReTr(1−Urect)+c2∑
par

1
3

ReTr(1−Upar)

]

. (2.2)

The lattice gauge couplingβ is defined asβ = 6c0/g2, and the values ofc1 andc2 are fixed by the
value ofc0 and the plaquette expectation valueu0. The benefits of the Lüscher-Weisz compared
to the Wilson gauge action are a better condition number ofX†X (as long as no gauge smearing is
involved) and absence of dislocations.
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We use Jacobi smeared sources (κ = 0.21,n = 50). To set the scale we compute

fπ(mq) =
mq

m3/2
π

Asl√
Ass

, (2.3)

for each of our quark masses, wheremπ andAsl,ss are the mass and amplitude from cosh fits to the
smeared-local and smeared-smeared pseudoscalar correlators. We extrapolate the lattice numbers
to the chiral limit by the leading order formula

fπ(mq) = fπ

(

1+4Lq
5
m2

π
f 2
π

)

, (2.4)

The resulting values ofa are given in Table 1 (for the values ofLq
5 see the legend of Fig. 2). Note,

that the lattice constant is about 10% larger than in [4] where the Sommer scale was used. Such a
scale ambiguity is a familiar phenomenon of quenched simulations.

β lattice cfg. a/ fm a−1/ MeV

8.0 163×32 230 0.153(3) 1290(30)
8.45 163×32 250 0.105(2) 1870(40)
8.45 243×48 200 0.105(1) 1870(20)

Table 1: Lattices used in the simulation. The scale was determined via fπ (see Fig. 2).

3. Quark masses

The best signal for the pseudoscalar mass is obtained from the correlator of the time compo-
nent of the axial current. An example of the results is displayed in Fig. 3. The quenched chiral
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Figure 3: The squared pseudoscalar mass as
function ofmq together wit the fit Eq. (3.2).
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Figure 4: A plot of m2
π/mq reveals the existence

of quenched chiral logs.

perturbation theory prediction formπ reads

m2
π = Amq

(

1−δ
(

ln
(

Amq/Λ2
χ

)

+1
))

+O
(

m2
q

)

, (3.1)
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lattice δ
8.00, 163×32 0.16(4)

8.45, 163×32 0.3(1)

8.45, 243×48 0.15(3)

Table 2: The chiral log parameterδ .

where the quenched chiral log appears with a prefactorδ giving rise to a singularity inm2
π/mq. The

fit is shown in Fig. 4. FixingΛχ to 1 GeV, we obtain the values ofδ in Table 2. Although the chiral
logs will strongly affect the determination ofmℓ = 1/2(mu + md), we will ignore this problem in
the following.

The fit functions we use to determine the bare light and strange quark masses are

m2
π = Amℓ +Bmℓ lnmℓ +Cm2

ℓ ,

m2
K = A

mℓ +ms

2
+B

mℓ +ms

2

(

ms lnms−mℓ lnmℓ

ms−mℓ
−1

)

+C

(

mℓ +ms

2

)2

. (3.2)

The renormalisation is done non-pertubatively1 in theRI′−MOM scheme with a variant of the
method introduced in [6], using momentum sources[7]. This variant requires only small statistics,
and one does not need to perform inversions for each operatorunder investigation (although one
needs to invert the Dirac operator for each momentum separately). We implement the renormalisa-
tion condition for the vertex

Tr
(

Γren
O Γ−1

O,Born

)

= 12, (3.3)

on the lattice. Putting in the definition of the renormalisedvertex we obtain

1
Zm

= ZS =
Zq

1
12Tr

(

ΓSΓ−1
S,Born

) . (3.4)

In the following, we useΛO for the denominator of the r.h.s of Eq. (3.4) forO = {A,V,P,S}. The
wave function renormalisationZq is computed fromZq = ZAΛA, where we use the axial Ward
identity to computeZA, so that it can be extrapolated

ZA = lim
mq→0

lim
t→∞

2mq〈P(t)P(0)〉
〈∂4A4(t)P(0)〉 . (3.5)

The chiral extrapolation is illustrated in Fig. 5.
We now proceed with the computation ofΛAandΛS. We exploit the identity isΛS = ΛP, a

consequence of chiral symmetry. On the lattice both are modified by zero mode effects∝ 1/(amq)
2,

which are finite volume artefacts. Additionally, spontaneous chiral symmetry breaking produces a
1/(amq) contribution toΛlatt

P . Thus, we extractΛS as the common constant from fits

Λlatt
P =

p1

a2m2
q
+

p2

amq
+ ΛS+ p4a2m2

q,

Λlatt
S =

s1

a2m2
q
+ ΛS+s3a2m2

q. (3.6)

1A perturbative calculation of the renormalisation factorscan be found in [5].
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Figure 5: ZA from the axial Ward identity.
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Figure 6: ZRGI
S for both values ofβ

for each value ofµ2. ΛA is computed in a similar fashion from linear fits toΛlatt
A andΛlatt

V with a
common constant. In the next step we need to identify the region where non-perturbative effects
are small. To this end we remove the renormalisation group running from theRI′−MOM renor-
malisation constantZS = ZAΛA/ΛS using the 4-loop results from [8]. The result is shown in Fig.6,
where the linear regions are clearly identified. We extract the intercept and quote the results in the
MS scheme atµ = 2 GeV in Table 3. Note, that the lattice artefacts (represented by the slope)

β ZRGI
S slope ZMS

S (2 GeV)

8.00 1.18(2) −0.007(2) 0.85(2)

8.45 1.02(1) −0.004(1) 0.73(1)

Table 3: ZS

β mMS
ℓ mMS

s

8.00 4.2(1) 127(1)

8.45,163 32 3.5(2) 118(3)

8.45,243 48 4.1(1) 119(1)

Table 4: Light and strange quark masses

scale witha2, as expected for (the automaticallyO(a) improved) overlap fermions. The resulting
quark masses are given in Table 4. The light quark mass scalesvery well, but we see a volume
dependence. For the strange quark mass we see some dependence ona, but not on the volume.

4. Vector meson and nucleon masses

In this section we extract vector meson and nucleon masses from our data and compare their
chiral behaviour to predictions of quenched chiral perturbation theory. The vector meson mass
(Fig. 7) confirms the prediction of a negative value ofC1/2 in a fit according tomρ(mπ) = mρ +

C1/2mπ +C1m2
π +C3/2m3

π . The prediction for the nucleon has the same structure, but it is harder
to confirm the negative sign ofC1/2 for mN, since the errors make the results compatible with zero
unless one uses the low mode averaging technique. In this case we find a value ofC1/2 =−0.32(18)
at β = 8.45, 243 48, which is in good agreement with the chiral perturbation theory prediction
C1/2 = 3/2π(D−3F)2δ = −0.25(5)2 (Fig. 8).

5. Summary

In a quenched overlap simulation we have computed the light and strange quark masses

2D and F are axial current matrix elements, D=0.81(3), F=0.47(4) [9]
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Figure 7: Quenched chiral fits to the vector me-
son.
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Figure 8: The same for the nucleon. The
dashed line is a fit to low mode averaged data.

mMS
ℓ (2 GeV) = 4.1(1) MeV and mMS

s (2 GeV) = 119(1) MeV. We demonstrated the existence
of quenched chiral logs and the expected chiral behaviour offπ , mρ , andmN.
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