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1. Introduction

Numerical simulations based on lattice QCD allow us to calculate physical quantities in high
accuracy [1]. However, electromagnetic and isospin-violating effects are usually ignored. Taking
into account these effects is important for more realistic predictions. In practice, it is pointed out
that for light quark masses systematic errors from electromagnetic effects can be comparable with
statistical one [2].

An attempt was made to include electromagnetic effects in lattice QCD [3]. Pseudoscalar
meson masses are calculated on the background of gluon and photon fields. π+

− π0 splitting is
found to be 4.9(3) MeV at β = 5.7 with the Wilson action. Their result shows a good agreement
with experiments. But their simulations were performed at a single lattice spacing with unimproved
actions. The scaling violation of their result is not expected to be small. Another point is that the
finite size corrections were estimated only with a model. It is desirable to evaluate finite size effects
from a first principle calculation directly.

In this work, we study electromagnetic mass splittings of mesons and extract quark masses
in the quenched theory. 1 We employ an improved action combination, the renormalization
group(RG) improved gauge action and the meanfield-improved clover quark action. Pseudoscalar
and vector meson masses are computed at three lattice spacings and extrapolated to the continuum
limit. Finite size effects are evaluated on lattices with the spacial size of L = 2.4 fm and L = 3.2 fm.
Comparison of m+

π −m0
π as well as m+

ρ −m0
ρ with experimental values are made. Electromagnetic

contribution to kaon mass splittings is also discussed.

2. Method

We generate SU(3) and U(1) fields and calculate quark propagators on the combined SU(3)×

U(1) configurations. SU(3) configurations are generated by the pseudoheat bath algorithm. For
the U(1) gauge part we employ a non-compact Abelian gauge action. U(1) configurations are
constructed of the Fourier transformed photon fields in the momentum space [5]. We fix the gauge
to the Coulomb one in both SU(3) and U(1) parts and use a gaussian smearing function. Meson
masses are computed from quark propagators. In this calculation, we use only connected part
of quark propagators. In the presence of electromagnetic fields, isospin is no longer a conserved
quantity. Though the violation for m2

π0 are expected to be small, disconnected diagrams may give
measurable contribution. Estimate of the disconnected part is under investigation. Masses are
obtained by χ2 fits to hadron correlators, taking account of correlations among different time slices.
Statistical errors of hadron masses are estimated with the jack-knife procedure.

Our simulations are performed at β = 2.187 (aρ = 0.20 fm), β = 2.334 (aρ = 0.16 fm) and
β = 2.575 (aρ = 0.11 fm) using 123

×24, 163
×32 and 243

×48 lattices with the spatial extent L ∼

2.5 fm. 163
×24 lattices at β = 2.187 are also employed to examine the finite size effects. We take

four hopping parameters corresponding to mPS/mV = 0.76− 0.51. Configurations are generated
independently at each mPS/mV . Measurements are carried out at each 100 sweeps. Our simulation
parameters are summarized in Table 1. These parameters are chosen so that they correspond to
those of two-flavor full QCD data generated by CP-PACS.

1For a similar work using N f = 2 DBW2 gauge and domain wall fermion actions, we refer to Ref. [4].
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Table 1: Simulation parameters

β 2.187 2.334 2.575

Size 123
×24(163

×24) 163
×32 243

×48

Ncon f 800(400) 400 100

0.556

0.558

0.560

0.562

0.564

0.566

0.568

0.570

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
L [fm]

 mPS
2 (qu , qd) 

 mPS
2 (0 , 0) 

0.885

0.890

0.895

0.900

0.905

0.910

0.915

0.920

0.925

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
L [fm]

 mV(qu , qd) 
 mV(0 , 0)

Figure 1: Volume dependence of charged pseudoscalar (left panel) and vector meson masses (right panel) at
mPS/mV = 0.62 on 123

×24 lattice. For comparison, masses in pure QCD (open symbols) are also plotted.

3. Simulation results

We first check finite size effects in our results. Finite size corrections may be enhanced in the
presence of electromagnetic fields because electromagnetic fields have a long interaction range. It
is necessary to estimate magnitude of finite size corrections. In Fig. 1, we plot charged pseudoscalar
and vector meson masses as a function of the spatial volume. The results obtained on 123

×24 and
163

× 24 lattices are mutually consistent within errors. We did not find any enhancement of finite
size effects by electromagnetic fields. In the quenched approximation, L = 2.4 fm seems to be
enough for meson calculations, even if there is an electromagnetic interaction.

In order to extrapolate our results to the chiral limit, we fit a hadron mass as a function of
quark masses and charges. We employ the following form for a chiral extrapolation of pseudoscalar
meson masses.

m2
PS = APS(qq +qq)

2 +BPS(qq,qq)(mq +mq), (3.1)

BPS(qq,qq) ≡ BPS
0 +BPS

2 (qq +qq)
2, (3.2)

where APS,BPS
0 ,BPS

2 and κc in mq,mq are fitting parameters. qq is an electric charge for a particle
in units of e and qq is for an antiparticle. q = +2/3 for the up quark and q = −1/3 for the down
quark are assigned. We use a quark mass defined through a vector Ward identity,

mq =
1
2

(

1
κq

−

1
κc

q

)

, mq =
1
2

(

1
κq

−

1
κc

q

)

, (3.3)
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Figure 2: Chiral extrapolations of pseudoscalar meson masses at β = 2.187.

where κq is a hopping parameter for a quark and κq is for an antiquark. κ c
q,q are the corresponding

critical hopping parameters. This extrapolation function, inspired by the chiral perturbation theory,
only depends on the total charge and the quark mass combination. In the fits, correlations among
several charge combinations are neglected for simplicity. We estimate the errors by the jackknife
method. Strictly speaking, the quenched chiral logarithm term must be added to Eq. (3.1). How-
ever, the logarithmic curvature is not seen in our data within mPS/mV = 0.76−0.51. Smaller quark
mass data are needed for a more precise extrapolation. We found Eq. (3.1) reproduce our lattice
data well. As an example, the fit result at β = 2.187 is presented in Fig. 2. π+ is heavier than π0,
as we see in nature.

Vector meson masses are extrapolated as follows.

mV = AV (qq,qq)+BV (qq,qd)(mq +mq), (3.4)

AV (qq,qq) ≡ AV
0 +AV

2 (qq +qq)
2, (3.5)

BV (qq,qq) ≡ BV
0 +BV

2 (qq +qq)
2. (3.6)

AV
0 ,AV

2 ,BV
0 and BV

2 are fitting parameters. In contrast to the case of pseudoscalar mesons, mass dif-
ference of charged and neutral vector mesons is found to be small. This tiny mass difference is con-
sistent with the result calculated by the hidden local symmetry formulation, ∆mρ = −1 MeV [6].

We identify the physical point with experimental values of π 0 and ρ0 masses, Mπ0 = 0.1350 GeV
and Mρ0 = 0.7751 GeV. By solving Eq. (3.1) and Eq. (3.4) using Mπ0 ,Mρ0 , a sum of bare up and
down quark masses at the physical point, (mu +md)phys, are determined. The lattice spacing aρ is
set by identifying Mρ0 with mV . Substituting (mu + md)phys to Eq. (3.1) predicts π+ mass. Sim-
ilarly, Eq. (3.4) gives mρ+ . To determine up, down and strange quark masses independently, we
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Figure 3: Lattice spacing dependence of quark masses with and without electromagnetic effects.

also use experimental values of K+ and K0 meson masses as inputs. (mu +ms)phys is obtained from
MK+ = 0.4937 GeV and (md + ms)phys from MK0 = 0.4976 GeV. Quark masses are renormalized
using one-loop renormalization constants Zm and coefficients bm at µ = 1/a [7],

mMS
q (µ = 1/a) = Zm

(

1+bm
mq

u0

)

mq

u0
, (3.7)

where u0 is a tadpole factor, u0 = (1−0.8412/β )1/4. The MS quark masses at µ = 1/a are evolved
to µ = 2 GeV using the four-loop beta function.

Continuum extrapolations are performed by linear fits to the data at three lattice spacings.
Our preliminary results for light quark masses are mMS

u (µ = 2 GeV) = 3.03(19) MeV, mMS
d (µ =

2 GeV) = 4.44(28) MeV, mMS
s (µ = 2 GeV) = 99.2(52) MeV. Fig. 3 illustrates lattice spacing de-

pendence of quark masses with and without electromagnetic effects. We found electromagnetic
contributions to the strange quark mass is 1%. In contrast to the case of quark masses, electro-
magnetic mass splittings of pseudoscalar and vector mesons show mild lattice spacing dependence.
Therefore, we employ constant fits for continuum extrapolations of electromagnetic mass split-
tings. Our results are represented in Fig. 4. The obtained mass splittings are consistent with
experimental values. In addition to π+

−π0 and ρ+
−ρ0 mass difference, we can estimate elec-

tromagnetic contribution to K+
−K0 mass difference by Eq. (3.1). Using a constant continuum

extrapolation again, the electromagnetic contribution to K+
−K0 mass difference is evaluated to be

1.420(24) MeV, which is close to the value of Dashen’s theorem 1.3 MeV [8], rather than a model
estimate 2.6 MeV [9]. But, our simulations are in the quenched approximation and the chiral log-
arithm is neglected. Including dynamical quarks and chiral logarithm effects is needed for a more
precise comparison with other calculations.

4. Conclusions

We calculated electromagnetic mass splittings using the RG-improved gauge action and the
clover-improved Wilson quark action on the background of SU(3)×U(1) fields in the quenched
approximation. After chiral and continuum extrapolations, we found π +

−π0 and ρ+
−ρ0 mass

differences are consistent with experimental values, and we can extract up, down and strange quark
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Figure 4: Lattice spacing dependence of electromagnetic mass splittings. Star represents the experimental
value.

masses. We also confirmed that mass differences obtained with L = 2.4 fm are not shifted by finite
size effects. An important future work is to include dynamical quark effects. Simulations using full
QCD data generated by CP-PACS collaboration are ongoing.
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