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We discuss our implementation of dynamical Ginsparg-Wilson type fermions using a stout-
smeared chirally improved Dirac operator. Such operators have been studied extensively in
quenched calculations within the Bern-Graz-Regensburg (BGR) collaboration. Here we discuss
the development and testing of the Hybrid Monte Carlo algorithm with this Dirac operator. We
study the chiral properties of this operator in a dynamical setup, comparing, e.g., the spectra of
the operator for the dynamical and quenched cases. We then discuss quantitative features of the
algorithm like autocorrelation and performance.
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1. Chirally improved fermions

Chirally improved (CI) fermions [1] are Ginsparg-Wilson type fermions. The most general
ansatz for a lattice Dirac operator reads

Dx,y =
16

∑
i=1

α i
x,y(U)Γi , (1.1)

where Γi {i = 1 . . .16} are the 16 elements of the Clifford algebra and α i
x,y(U) are sums of path

ordered products of links U . Inserting D into the Ginsparg-Wilson relation and solving the resulting
algebraic equations yields the chirally improved Dirac operator DCI. In principle this can be an
exact solution, but that would require an infinite number of terms. In practice the number of terms is
finite and the operator is a truncated series solution to the Ginsparg-Wilson relation, respecting the
lattice symmetries, invariance under charge conjugation as well as γ5-hermiticity, but connecting
sites only over a certain distance.

For our implementation we use coefficients up to a path length of four [1, 2]. Some of these
terms used are sketched in Fig. 1. An operator like this, which is ultra-local, can never fulfill the
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Figure 1: The ansatz for the chirally improved Dirac operator

relation exactly, which of the currently known actions only the overlap action does.
CI fermions have been extensively tested in quenched calculations (see, e.g., Ref. [3]). In these

tests it was found that smearing the gauge fields improves the properties of CI fermions significantly
and as a consequence on smeared gauge configurations one can go to smaller quark masses without
running into the problem with exceptional configurations. On HYP smeared quenched configura-
tions pion masses down to 220 MeV could be reached on lattices of size 163× 32 and about 250
MeV on 123×24 lattices. We expect this to improve in dynamical simulations.

2. Dynamical chirally improved fermions

2.1 First attempts

First attempts to use CI fermions in dynamical simulations were presented in [4]. As men-
tioned, smearing of the gauge fields is helpful for going to small quark masses. In all corresponding
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L3×T am βLW res ∆t steps acc. HMC CPU Hours/ a[fm]
time HMC Time

83×16 0.05 5.4 10−10 0.015 50 ∼93% 700 0.6 h (16 O) 0.114(3)
83×16 0.05 5.3 10−10 0.015 50 ∼91% 700 0.6 h (16 O) 0.135(3)
83×16 0.08 5.4 10−10 0.015 50 ∼93% 700 0.5 h (16 O) 0.138(3)

123×24 0.05 5.3 10−8 0.01 100 ∼87% 200 4 h (8 H) 0.129(3)

Table 1: Parameters, statistics and some results from our dynamical simulations.

quenched simulations up to now HYP smearing was used. This, however, is not differentiable and
therefore does not allow for implementation in a Hybrid Monte Carlo (HMC) updating algorithm.
In Ref. [4] we therefore tried to use a partial-global updating scheme and we could collect first
experiences on rather small lattices (up to 84).

The major drawback of such algorithms is that the computer time increases as V 2. We there-
fore decided to proceed with implementing the HMC method, which is, however, technically sig-
nificantly more complicated for actions like ours, that have many interaction terms.

2.2 Hybrid Monte Carlo

In quenched calculations it was found that the tadpole improved Lüscher-Weisz gauge action
had certain advantages over the Wilson gauge action in the sense that the configurations produced
with this action were smoother than the ones produced by the Wilson gauge action. We therefore
used the same gauge action in our studies.

Smearing is an essential quality improving ingredient in our Dirac operator. The recent in-
troduction of the differentiable “stout”-smearing [5] opened the possibility to implement HMC for
smeared fermionic actions like ours.

In principle HMC is directly applicable for DCI; problems like the discontinuities one has to
deal with in HMC for the overlap action do not occur for our action – it is not an exact GW action,
which is an advantage in this regard. It can be expected that HMC for CI retains the very favorable
V 5/4 scaling properties which it shows for staggered and Wilson fermions.

The problems of implementation were mostly technical. Much of the work went into de-
veloping automated methods to write down the fermionic force for all 2428 different terms of our
operator. Otherwise the HMC code we used so far is rather conservative. We use a standard pseudo-
fermion action with two mass degenerate fermion flavors S f = |D−1ξ |2. The integration scheme
is leap-frog integration, as the solver for D†D (needed for the molecular dynamics evolution) the
standard conjugate gradient algorithm, and as the solver of D alone (needed in the accept/reject
step) the BiCGStab was used.

It is well known that the performance of the inverter may be significantly improved by pro-
viding a good guess for the solution. Using an optimal linear combination of the twelve previous
solutions caused the number of conjugate gradient iterations, required for the inversion of the DCI

during the molecular dynamics evolution inside a trajectory, to fall by a factor between two and
three (chronological inverter by minimal residual extrapolation).
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Figure 2: Number of conjugate gradient iterations for each molecular-dynamics step (123× 24 lattice;
a=0.135 fm; am = 0.05). We use the information from 12 previous solutions as starting guess for new
solution. The peaks correspond to the number of iterations required in the accept/reject step.

Here we concentrate on the algorithmic aspects of our work; in another contribution to these
proceedings we give first results of the physical aspects [6].

2.3 Parameters and statistics

First tests of our code were done on 83×16 lattices. As we already know from the quenched
tests this lattice size does not allow for small bare quark masses, we chose am = 0.05 and am =

0.08. Runs with 123× 24 lattices are in progress; there we approach much smaller masses am
down to 0.02.

In Table 1 we present some parameters and results of our simulations. The conjugate gradient
residual for the molecular dynamics evolutions is denoted as res, initially, when we started our
small lattice runs, we chose a very small value (10−10). We then gradually increased it in accor-
dance with the folklore of other dynamical simulations (with other actions) and are currently using
res = 10−7 during the HMC trajectory but still 10−10 in the accept/reject step.

The lattice spacing a was determined [6] using the Sommer scale in order to have a first
estimate. Eventually we will use the hadron masses to set the scale.

The runs were done on a cluster of Sun Fire V20z each with two Opteron 248 processors at 2.2
GhZ (at the Karl-Franzens-Universität, Graz) and on the Hitachi SR8000 at LRZ Munich. In the
table (16 O) denotes 16 of the Opteron processors (8 nodes) in parallel, (8 H) denotes 8 SR8000
nodes. Just to get an idea about timing, we note that for the 123× 24 lattice at am = 0.05 one
trajectory takes ∼ 4 hours on 8 nodes of the Hitachi.

As a first study we made runs on small lattices checking equilibration, lattice spacing and the
the ρ and π meson correlators.
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Figure 3: History of the plaquette (upper part) and the number of CG iterations (lower part) in the ac-
cept/reject step (2nd run in Table 1).

3. Results

In Fig. 2 we plot the number of conjugate gradient iterations against molecular dynamics time.
After 1000 inversions we decided to reduce the conjugate gradient tolerance was from 10−14 to
10−12. The drop in the number of iterations is quite evident from this plot.

To demonstrate autocorrelation we show in Fig. 3 the histories of the plaquette and the number
of BiCGStab iterations in our accept/reject step. Visual inspection indicates a time scale of roughly
25 and a possible second time scale O(200).

We computed the integrated autocorrelation time from the number of BiCGStab iterations
required for the accept/reject step. This is widely believed to be the longest autocorrelation present
and in our case this is about 36 trajectories. In contrast the autocorrelation time for the plaquette,
which is the most local quantity and therefore is expected to have the shortest autocorrelation time
is less than 2 trajectories. Obviously the runs are yet to short for a precise determination of the
autocorrelation times.

The DCI – due to the truncation – obeys the GW Relation only approximately. In the quenched
calculations it has exhibited, however, very good chiral properties. We may now check, whether
this feature survives or even improves in the simulation with dynamical fermions. As a simple
check we plot in Fig. 4 the low lying spectrum of DCI along with the Ginsparg-Wilson circle for
three typical gauge configurations and compare with a spectrum from a quenched simulation with
similar lattice parameters. As can be seen from the figure, the spectrum follows the Ginsparg-
Wilson circle remarkably well at least for the low-lying modes, that have been determined, and
that are important towards the continuum limit. This assures us to a certain extent that the good
chiral properties observed in the quenched studies are indeed also present in the dynamical case.
We conclude that the chiral properties of DCI on dynamical configurations are roughly the same as
on quenched configurations of the same lattice spacing.
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Figure 4: L.h.s: Three spectra of DCI (am = 0.05) on dynamical configurations of 83× 16, a = 0.14 fm.
R.h.s: Sample DCI (am = 0.05) spectrum on a quenched configuration with similar parameters, i.e., lattice
size 83×16, a = 0.15 fm.

4. Summary and outlook

We presented recent results of our work in progress on implementing Ginsparg-Wilson type
fermions in a full dynamical QCD simulation. Dynamical chirally improved fermions with stout-
smeared links can be implemented using an HMC algorithm with all its well-known favorable
properties, like V 5/4 scaling. The Dirac operator retains its good chiral properties which allowed –
in quenched simulations – to reach pion masses down to 250 MeV on moderately sized lattice of
124×24. We expect to be able to reach such values also in the dynamical fermion case. We hope to
obtain pion masses of about 300 MeV in our recently started runs and hope to be able to go below
that in the future. More results on our simulations, i.e., meson masses and topological charge, can
be found in [6].
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