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1. Introduction

Recently it turned out that lattice gauge theory can provide a framework for non-perturbative
study of chiral gauge theories, despite the well-known problem of the species doubling. The clue to
this development is the construction of gauge-covariant and local lattice Dirac operators satisfying
the Ginsparg-Wilson relation[1, 2, 3, 4],

γ5D+Dγ5 = 2aDγ5D. (1.1)

This relation has made it possible to introduce Weyl fermions on the lattice and construct anomaly-
free chiral gauge theories with exact gauge invariance[5, 6]. One ofthe crucial steps in the gauge-
invariant construction of chiral lattice gauge theories is to establish the exact cancellation of the
gauge anomaly at a finite lattice spacing.

In the case of U(1) chiral gauge theories[6], the exact cancellation has been achieved through
the cohomological classification of the chiral anomalyq(x) which is a topological field in the sense
that

∑
x

δq(x) = 0 (1.2)

under a local variation of the admissible gauge field. Such a field on the four-dimensional infinite
lattice is classified uniquely in the following form:

q(x) = α +βµνFµν(x)+ γ εµνρσ Fµν(x)Fρσ (x+ µ̂ + ν̂)+∂ ∗µkµ(x), (1.3)

whereFµν(x) is the gauge field tensor,α ,βµν andγ are constants andkµ(x) is a gauge invariant
local current[5, 7, 8]. For the multiplets that satisfy the anomaly cancellation condition of the U(1)
chargeseα , it has been shown that the anomaly is cohomologically trivial,

∑
α

eαqα(x) = ∂ ∗µkµ(x), qα(x) = q(x)|U→Ueα . (1.4)

Then the trivial part of the anomaly is used in the gauge-invariant construction of the Weyl fermion
measure. In short, it plays the role of the local counter term in the effective action.

For the practical computation of observables in the abelian chiral lattice gauge theories, it is
required to compute the Weyl fermion measure for every admissible configuration. However it
seems difficult to follow the steps given in [6] literally. The problem is the use of the infinite lattice
in order to make sure the locality property of the trivial part and thereforethe currentkµ(x) was
constructed through infinite dimensional procedures which would not be immediately usable for
numerical calculation.

The purpose of this paper is to give a prescription to solve the local cohomology problem
within a finite lattice. With this method, we will show that the currentkµ(x) can be obtained
directly from the calculable quantities on the finite lattice. We first introduce the vector potential
which represents the admissible U(1) gauge fields by separating the link variables into the instanton
configuration and the part of the local and dynamical degrees of freedom around the magnetic flux
(Section 2). We next show that the Poincaré lemma can be reformulated so that it holds true on the
finite lattice up to exponentially small corrections of orderO(e−L/2ρ), whereL is the lattice size
andρ is the localization range of the differential forms in consideration (Section 3.1). Equipped
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with the modified Poincaré lemma and the vector potential for the admissible U(1) gauge fields, we
will perform the cohomological analysis of the topological field (like as chiral anomaly) directly
on the finite lattice (Section 3.2). We will computekµ(x) in two-dimensions numerically and check
its locality properties (Section 4).

2. Admissible U(1) gauge fields on a finite lattice

Our first step is to formulate the vector-potential-representation of the link variables associated
with an admissible U(1) gauge field on a finite lattice. Such a representation has been formulated
in the original cohomological analysis in [5] on the infinite lattice. As has been shown in our
previous paper[10], it is also possible to formulate the periodic vector-potential representation for
the admissible gauge fields on the finite lattice.

We set the lattice spacinga to unity and consider U(1) gauge fields on a finite lattice of sizeL
with periodic boundary conditions. The independent degrees of freedom are then the link variables
at the points in the regionΓn =

{

x∈ Z
n|−L/2≤ xµ < L/2

}

whereL is assumed to be an even
integer for simplicity. We impose the admissibility condition,|Fµν(x)|< ε. Forε < π/3 the gauge
fields can be classified uniquely by the magnetic fluxesmµν . In this respect, the following field
(the instanton configuration) is periodic and have constant field tensor equal to 2πmµν/L2:

V[m](x,µ) = e−
2π i
L2 [Lδx̃µ ,L−1 ∑ν>µ mµν x̃ν+∑ν<µ mµν x̃ν ], (2.1)

where the abbreviation ˜xµ = xµ modL has been used. Then any admissible U(1) gauge field in the
topological sector with the magnetic fluxmµν may be expressed as

U(x,µ) = Ũ(x,µ)V[m](x,µ). (2.2)

We may regard̃U(x,µ) as the actual local and dynamical degrees of freedom in the given topolog-
ical sector. This is because the magnetic fluxmµν is invariant with respect to a local variation of
the link field. As shown in [10], it is possible to establish the one-to-one correspondence between
Ũ(x,µ) and periodic vector potentials̃Aµ(x) which satisfy

Ũ(x,µ) = eiÃµ (x), F̃µν(x) = ∂µ Ãν(x)−∂ν Ãµ(x), (2.3)

whereF̃µν(x) = Fµν(x) +
2πmµν

L2 and moreover̃Aµ(x) is indefinite up to a gauge function which
takes values that are integer multiples of 2π.

As emphasized in [5], an important point is that the locality properties of gauge invariant
fields should be the same independently of whether they are considered to be functions of the link
variables or the vector potential.

3. Local cohomology problem

3.1 Poincare lemma on a finite lattice

The Poincare lemma is given in [5] on the infinite lattice for the difference operators. On the
finite periodic lattice the lemma does not hold true any more, because the lattice is a n-dimensional
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torus and its cohomology group is non-trivial. However, the lemma can be reformulated so that
it holds true up to exponentially small corrections of orderO(e−L/2ρ) and for the form satisfying

∑x∈Γn
f (x) = 0, it holds exactly even on the finite lattice [10]. The latter result is the lattice counter

part of the corollary of de Rham theorem known in the continuum theory. The precise statements
are the following.

Lemma A (Modified Poincaré lemma)
Let f be ak-form which satisfiesd∗ f = 0 and∑x∈Γn

f (x) = 0 if k = 0. Then there exist ak+1-
form g and ak-form ∆ f such thatf = d∗g+∆ f . The tensor field∆ fµ1···µk(x) linearly depends only
on the values of the tensor fieldfµ1···µk(x) at the boundary,{ fµ1···µk(z)| z∈ ∂Γn}.

Lemma B (Corollary of de Rham theorem)
Let f be ak-form which satisfiesd∗ f = 0 and ∑x∈Γn

f (x) = 0. Then there exists ak+ 1-form g
such thatf = d∗g.

The construction of the formsg(x) and∆ f (x) is given explicitly in the proof of the lemmas.
The coefficients ofg(x) and∆ f (x) are some linear combinations of the coefficients off (x) and the
sizes of them are intimately related to that off (x). Now let us introduce norms of the forms by

‖ f (x)‖x0,p,ρ = maxx∈Γn

| fµ1···µk(x+x0)|

(1+‖x‖p)e−‖x‖/ρ (3.1)

with a localization rangeρ, an integerp and a reference pointx0 fixed. ‖x‖ is the taxi driver
distance from the origin tox. Then we can show the following bound for the norm of the form
g(x): ‖g(x)‖x0,p,ρ ≤C‖ f‖x0,p,ρ for some constantC independent off (x), x0 andL. As for the form
∆ f (x), we have|∆ fµ1···µk(x)| ≤C′e−L/2ρ for some constantC′ independent off (x), x0 andL. The
proofs of these bounds are given in the appendix of [10].

3.2 A solution of the local cohomology problem

We now describe how to perform the cohomological analysis of the topological fields. Let us
consider a gauge-invariant, exponentially local and topological fieldq(x). As mentioned in section
2, We may regard it as the local function of the vector potentialÃµ(x). Scaling vector potential by
a parametert ∈ [0,1] and differentiating and integratingq(x) with respect tot, we obtain

q(x) = α + ∑
y∈Γn

jµ(x,y)Ãµ(y), jµ(x,y) =
∫ 1

0
dt

∂q(x)

∂ Ãµ(y)

∣

∣

∣

∣

Ã→tÃ

, (3.2)

whereα is a constant that depends onmµν and four Wilson lines independent of the field tensor.
From the topological property, the gauge invariance and the locality property of q(x), we have the
following constraints on the currentjµ(x,y) respectively,

∑
x∈Γn

jµ(x,y) = 0, jµ(x,y)
←−
∂ ∗µ = 0, ‖ jµ(x,y)‖y,p,ρ ≤C, (3.3)

where
←−∂ ∗µ is the backward nearest-neighbor difference operator with respect toy andC is a constant.

We note that the above relation is exactly same as that obtained in the course ofthe original
cohomological analysis[5]. Once we obtain this relation, we can immediately seethat the same
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argument as in the original analysis by using the lemma A(B) and it leads to the same first-step
result, lemma 6.1 in [5] up to exponentially small corrections, lemma 6.1 in [10]. Thesecond-step
result, lemma 6.2 in [10], can be also obtained by using the lemma A(B). As a consequence, we
can show that

q(x) = α +βµν F̃µν(x)+ γ εµνρσ F̃µν(x)F̃ρσ (x+ µ̂ + ν̂)+∂ ∗µhµ(x)+∆q̃(x) (3.4)

whereα ,βµν andγ are constants that depend onmµν and four Wilson lines independent of the
field tensor,hµ(x) is a gauge invariant local current and|∆q̃(x)| ≤ ce−L/2ρ . Whenq(x) is the
covariant abelian gauge anomaly, for the anomaly free multiplets, the first three terms of eq.(3.4)
are the orderO(e−L/2ρ) and thereforeq(x) = ∂ ∗µhµ(x)+∆q(x) where|∆q(x)| ≤ ce−L/2ρ . The index
theorem suggests us to conclude∑x∈Γn

∆q(x) = 0. From the lemma B,∆q(x) = ∂µ∆kµ(x). Finally
we obtain eq.(1.4) wherekµ(x) = hµ(x)+∆kµ(x).

4. Numerical calculation in two dimensions

We now describe our result of numerical computations of the local current kµ(x) for the chi-
ral anomaly,q(x) = tr{γ5(1−aD)(x,x)} in two dimensions. Once the bi-local currentjµ(x,y) is
computed, the cohomological analysis of the chiral anomaly can be performed numerically by the
sequence of the applications of the lemmas. We may represent the chiral anomaly as follows:

q(x) = A (x)+∂ ∗µhµ(x)+∆q(x), (4.1)

whereA (x) = α + γεµν F̃µν(x). We consider the lattice sizesL = 8,10,12. Admissible gauge
fields are generated by Monte Carlo simulation using the actionS= β ∑� F2

�
/{1−F2

�
/ε2}. As

reported in [9], the topological charge is preserved during the Monte Carlo updates with this type
of action, even whenε is set toπ. We adopt this option and check the locality of the topological
field numerically for several values ofβ . We consider the topological sectors withm12 = 0,1 and
the initial configuration is chosen asV[m](x,µ) with a givenm12. Here the original topological
field q(x) is constructed by computing all eigenvalues and eigenvectors ofHw for the given ad-
missible gauge fieldU(x,µ). We found that the topological field has typically the values of order
O(10−2)−O(10−3) and|∆q(x)| ≃O(10−5)≃O(e−L/2ρ) (L = 12). The integer topological charge
Q = ∑x∈Γ2

q(x) = m12 is reproduced within the error of orderO(10−12)−O(10−13). We use the
Gaussian Quadrature formula with the degreeNg = 20 to approximate the parameter integral in
eq.(3.2). The other details are given in [11].

In order to check the locality properties of the fields,q(x) andhµ(x), we apply a small local
variation to the gauge field asU(x,µ)→ eiηµ (x)U(x,µ) whereηµ(x) = 0.05× 2π δx,x0δµ,1 For
each variation of the fields, we defineδη f (r) = max

{

|δη f (x)|
∣

∣ r =‖ x−x0 ‖
}

and see the locality
properties of the fields by plottingδη f (r) againstr =‖ x− x0 ‖. The results are shown in figure.
The variations of the topological fieldq(x) and the currenthµ(x) are shown with the vanishing
magnetic fluxm12 = 0. The locality of the topological fieldq(x) is clearly seen. It also shows that
the currenthµ(x) has the same locality property as the topological fieldq(x) has and thus is an
exponentially local current. We can read the locality range asρ ≃ 0.9. The maximum value of the
field ∆q(x) is also shown in the same figure. The locality properties of the fields are also confirmed
for topologically non-trivial gauge fields.
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Locality of h1(x), h2(x)

L=12

h1, h2

-x0

Figure 1: open circle:δηq(r), cross:max of|∆q(x)|, filled square and triangle:δηhµ(r).

We next examine the cancellation of the gauge anomaly for the so-called 11112 model which
consists of four Left-handed Weyl fermions with unit charge and one Right-handed Weyl fermion
with charge two in two-dimensions. The gauge anomaly cancellation condition is satisfied as
follows: ∑4

i=1e2−(2e)2 = 0. We also check that∑α eα
A

α(x)≃O(10−4)≃O(e−L/2ρ) (L = 10).
Then the currentkµ(x) can be computed as explained in section 3.2 and thus it is an exponen-
tially local current. It can reproduce the original topological chargeQ within the deviation of order
O(10−15). The gauge invariance of the current is also maintained within the error.
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