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A practical construction of U(1) chiral lattice gauge thées Daisuke Kadoh

1. Introduction

Recently it turned out that lattice gauge theory can provide a frameworofo-perturbative
study of chiral gauge theories, despite the well-known problem of theespdoubling. The clue to
this development is the construction of gauge-covariant and local lattiee Dperators satisfying
the Ginsparg-Wilson relatiofj[[L} B, B, 4],

ysD + Dy = 2aDysD. (1.2)

This relation has made it possible to introduce Weyl fermions on the lattice aisttgot anomaly-
free chiral gauge theories with exact gauge invarigh¢e[5, 6]. Otteeddrucial steps in the gauge-
invariant construction of chiral lattice gauge theories is to establish the eaacellation of the
gauge anomaly at a finite lattice spacing.

In the case of U(1) chiral gauge theorigs[6], the exact cancellatietéan achieved through
the cohomological classification of the chiral anomg(ly) which is a topological field in the sense
that

z oq(x) =0 1.2)

under a local variation of the admissible gauge field. Such a field on thalimensional infinite
lattice is classified uniquely in the following form:

whereF,y (x) is the gauge field tensog, 3,y andy are constants arkj,(x) is a gauge invariant
local currentfb[]7[]8]. For the multiplets that satisfy the anomaly cancellatindition of the U(1)
chargesy, it has been shown that the anomaly is cohomologically trivial,

T et () = Oiku(). A7 (%) = AWy _ye (L4)

Then the trivial part of the anomaly is used in the gauge-invariant canitnuof the Weyl fermion
measure. In short, it plays the role of the local counter term in the eféeatition.

For the practical computation of observables in the abelian chiral latticeeghegries, it is
required to compute the Weyl fermion measure for every admissible coatfignr However it
seems difficult to follow the steps given {1} [6] literally. The problem is the dsheinfinite lattice
in order to make sure the locality property of the trivial part and therefogecurrent, (x) was
constructed through infinite dimensional procedures which would not be diatedy usable for
numerical calculation.

The purpose of this paper is to give a prescription to solve the local cdbggnproblem
within a finite lattice With this method, we will show that the currekyg(x) can be obtained
directly from the calculable quantities on the finite lattice. We first introduce tbh®r@otential
which represents the admissible U(1) gauge fields by separating the liaklegrinto the instanton
configuration and the part of the local and dynamical degrees ofdneedound the magnetic flux
(Section 2). We next show that the Poincaré lemma can be reformulated gdthiels true on the
finite lattice up to exponentially small corrections of or@e/2°), whereL is the lattice size
andp is the localization range of the differential forms in consideration (Section Equipped
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with the modified Poincaré lemma and the vector potential for the admissible U(dé gelds, we
will perform the cohomological analysis of the topological field (like as d¢t@reomaly) directly
on the finite lattice (Section 3.2). We will compukg(x) in two-dimensions numerically and check
its locality properties (Section 4).

2. Admissible U(1) gauge fields on a finite lattice

Ouir first step is to formulate the vector-potential-representation of the liéblas associated
with an admissible U(1) gauge field on a finite lattice. Such a representatioreeagdrmulated
in the original cohomological analysis ifi [5] on the infinite lattice. As has béems in our
previous pape[[10], it is also possible to formulate the periodic vecttmnpial representation for
the admissible gauge fields on the finite lattice.

We set the lattice spacirajto unity and consider U(1) gauge fields on a finite lattice of kize
with periodic boundary conditions. The independent degrees ofdreede then the link variables
at the points in the regioR, = {x € Z"| —L/2 < x, < L/2} whereL is assumed to be an even
integer for simplicity. We impose the admissibility conditi¢R,, (x)| < €. Fore < 11/3 the gauge
fields can be classified uniquely by the magnetic fluxgs. In this respect, the following field
(the instanton configuration) is periodic and have constant field tensat &g2mm,,, /L2:

2ni

Vim (%, ) = & 2 (-t 1 oMo By 2.1)

where the abbreviatiox), = x;; modL has been used. Then any admissible U(1) gauge field in the
topological sector with the magnetic fluy,, may be expressed as

U(Xau) :U’(Xv"l)\/[m](xvu) (2.2)

We may regardl (x, 1) as the actual local and dynamical degrees of freedom in the given tppolo
ical sector. This is because the magnetic figy, is invariant with respect to a local variation of
the link field. As shown in[[30], it is possible to establish the one-to-oneespondence between
U (x, u) and periodic vector potential§, (x) which satisfy

U(x, ) =), Fuv (%) = uAu () — A, (X), (2.3)

whereFyy (x) = Fyy(X) + 2"[2“” and moreoved, () is indefinite up to a gauge function which
takes values that are integer multiples af 2

As emphasized in[[5], an important point is that the locality properties of gaugriant
fields should be the same independently of whether they are considereduiodtions of the link

variables or the vector potential.

3. Local cohomology problem

3.1 Poincare lemma on a finite lattice

The Poincare lemma is given if] [5] on the infinite lattice for the differenceatpes. On the
finite periodic lattice the lemma does not hold true any more, because the latticelimamsional
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torus and its cohomology group is non-trivial. However, the lemma can bemmefated so that
it holds true up to exponentially small corrections of or@e~/2°) and for the form satisfying
Sxer, T (X) =0, it holds exactly even on the finite lattide[10]. The latter result is the latticateou
part of the corollary of de Rham theorem known in the continuum thedmg. precise statements
are the following.

Lemma A (Modified Poincaré lemma)

Let f be ak-form which satisfiesd”f =0 andy,.r, f(x) =0 if k= 0. Then there exist &+ 1-
form g and ak-form Af such thatf = d*g+Af. The tensor field\ ..., (X) linearly depends only
on the values of the tensor fiefg, ..., (x) at the boundary{ fy,..., (z)| z€ dTn}.

Lemma B (Corollary of de Rham theorem)
Let f be ak-form which satisfiesd*f = 0 and y,.r, f(x) = 0. Then there exists k+ 1-formg
such thatf = d*g.

The construction of the formg(x) andAf(x) is given explicitly in the proof of the lemmas.
The coefficients 0§(x) andAf (x) are some linear combinations of the coefficientd ©f) and the
sizes of them are intimately related to thatfgk). Now let us introduce norms of the forms by

’ fu1~~uk (X+ XO) |

(14 ||x||P) e~IIXll/e (3.1)

[ (%) x0.p.0 = M@%er,

with a localization range, an integerp and a reference poing fixed. ||x|| is the taxi driver
distance from the origin ta. Then we can show the following bound for the norm of the form
9a(x): |9(X)|Ix0,p.0 < C|| f|lxo,p,0 for some constar@ independent of (x), Xo andL. As for the form
Af(x), we havelAfy, ., (X)| < C'e /2P for some constar@’ independent of (x), X andL. The
proofs of these bounds are given in the appendik df [10].

3.2 A solution of the local cohomology problem

We now describe how to perform the cohomological analysis of the topaloigetds. Let us
consider a gauge-invariant, exponentially local and topological dield As mentioned in section
2, We may regard it as the local function of the vector potenﬁt,i;ik). Scaling vector potential by
a parameter € [0, 1] and differentiating and integratirggx) with respect td, we obtain

, ~ . 1. 0q(x)
G0 =a+ 3 JuyAY),  Julxy) = [ oo
v e ’ 0 0AL(Y)
wherea is a constant that depends oy, and four Wilson lines independent of the field tensor.
From the topological property, the gauge invariance and the locality gyopieq(x), we have the
following constraints on the curreff (x,y) respectively,

, (3.2)
A—tA

6Y) =0, Y3 =0, |liu(%Y)llype <C, (3.3)

Xel n

whereb_ﬁ is the backward nearest-neighbor difference operator with respgandC is a constant.
We note that the above relation is exactly same as that obtained in the cotingeoviginal
cohomological analysif[5]. Once we obtain this relation, we can immediatelthaeéhe same
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argument as in the original analysis by using the lemma A(B) and it leads to e fagt-step
result, lemma 6.1 in[5] up to exponentially small corrections, lemma 6.1 |n [10] s€bend-step
result, lemma 6.2 in[10], can be also obtained by using the lemma A(B). As agossce, we
can show that

q(X) = o + BuvFuv (X) + VEuvpoFuv (X)Fpo (X+ 1 + U) + d5hy (X) + AG(X) (3.4)

wherea, B,y andy are constants that depend om, and four Wilson lines independent of the
field tensor,hy(x) is a gauge invariant local current apfj(x)| < ce“/?° . Whenq(x) is the
covariant abelian gauge anomaly, for the anomaly free multiplets, the fiest terms of ed[.(3.4)
are the orde©(e~/?7) and therefore|(x) = d;hy(X) +Ag(x) where|Ag(x)| < ce™"/?. The index
theorem suggests us to conclugg, Ag(x) = 0. From the lemma BAq(x) = dy Ak, (X). Finally
we obtain eq[(1]4) whereg, (X) = hy (X) + Ak, (X).

4. Numerical calculation in two dimensions

We now describe our result of numerical computations of the local dukgr) for the chi-
ral anomaly,q(x) = tr{y5(1—aD)(x,X)} in two dimensions. Once the bi-local currgpt(x,y) is
computed, the cohomological analysis of the chiral anomaly can be pedaoramerically by the
sequence of the applications of the lemmas. We may represent the chiralsras follows:

q(x) = o (x) + 9 hu(x) +Aq(x), (4.1)

where o7 (X) = a + yeuy Fuv(X). We consider the lattice sizés= 8,10,12. Admissible gauge
fields are generated by Monte Carlo simulation using the aGien3 ¥ F2/{1—F2/e?}. As
reported in [P], the topological charge is preserved during the Mont® Qpdates with this type
of action, even whea is set tor. We adopt this option and check the locality of the topological
field numerically for several values @f We consider the topological sectors with, = 0,1 and
the initial configuration is chosen a4y (x, 1) with a givenm,. Here the original topological
field g(x) is constructed by computing all eigenvalues and eigenvectok,dbr the given ad-
missible gauge fielt (x, ). We found that the topological field has typically the values of order
0(102) —0(10°%) and|Aq(x)| ~ O(10°) ~ O(e"1/??) (L = 12). The integer topological charge
Q = Yyer,d(X) = My is reproduced within the error of ord&(10-12) — O(10713). We use the
Gaussian Quadrature formula with the degikge= 20 to approximate the parameter integral in
eq.(3.:2). The other details are given in][11].

In order to check the locality properties of the fieldéx) andhy(x), we apply a small local
variation to the gauge field ds(x, u) — €M®U (x,u) whereny(x) = 0.05x 278,01 For
each variation of the fields, we defidg f (r) = max{ |8, f (x)||r =|| x—Xo ||} and see the locality
properties of the fields by plotting, f(r) againstr =|| x—Xo ||. The results are shown in figure.
The variations of the topological fielg(x) and the currenh,(x) are shown with the vanishing
magnetic fluxm, = 0. The locality of the topological field(x) is clearly seen. It also shows that
the currenth, (x) has the same locality property as the topological figk) has and thus is an
exponentially local current. We can read the locality range @s0.9. The maximum value of the
field Ag(x) is also shown in the same figure. The locality properties of the fields areaifionced
for topologically non-trivial gauge fields.
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Figure 1: open circled,q(r), cross:max ofAq(x)|, filled square and triangley,; hy (r).

We next examine the cancellation of the gauge anomaly for the so-calle@ friddel which
consists of four Left-handed Weyl fermions with unit charge and onatrignded Weyl fermion
with charge two in two-dimensions. The gauge anomaly cancellation conditicatisied as
follows: 31 , € — (2€)? = 0. We also check thgt, €%/ (x) ~ O(10~%) ~ O(e*/??) (L =10).
Then the currenk,(x) can be computed as explained in section 3.2 and thus it is an exponen-
tially local current. It can reproduce the original topological chapgeithin the deviation of order
0O(1071%). The gauge invariance of the current is also maintained within the error.
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