
P
o
S
(
L
A
T
2
0
0
5
)
1
4
3

Localization of Low Lying Eigenmodes for Chirally
Symmetric Dirac Operator

M.I. Polikarpov
�

, F.V. Gubarev, S.M. Morozov and
ITEP, B. Cheremushkinskaya 25, Moscow, 117259 Russia
E-mail: polykarp@itep.ru, gubarev@itep.ru, smoroz@itep.ru

V.I. Zakharov
MPI, Föhringer Ring 6, 80805, München, Germany
E-mail: xxz@mppmu.mpg.de

We consider properties of zero and near-zero modes for overlap fermion operator in SU(2) lattice

gluodynamics. The density of the states is of the order of ΛQCD while the localization volume of

the modes tends to zero in physical units with the lattice spacing tending to zero. The situation

changes drastically when we study "vortex removed" configurations.

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

�
Speaker.

c
�

Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
L
A
T
2
0
0
5
)
1
4
3

Localization of Low Lying Eigenmodes for Chirally Symmetric Dirac Operator M.I. Polikarpov

1. Introduction

The material of this talk has a substantial overlap with that presented in the talks of N. Cundy,
C. Gattringer, T. De Grand, J. Greensite, J. Hetrick, I. Horvath, Y. Koma, S. Solbrig, B. Svetitsky,
S. Syritsyn.

We study SU(2) lattice gluodynamics and in our calculations we use the massless overlap
Dirac operator [1]:

D � ρ
a

�
1 � A�

AA† ��� A � DW � ρ
a � (1.1)

where A is the Wilson Dirac operator with negative mass term. Anti-periodic (periodic) boundary
conditions in time (space) directions were employed. It turns out that for SU(2) gluodynamics
the optimal value of ρ parameter is 1 � 4. Furthermore, we have used the minmax polynomial ap-
proximation [2] to compute the sign function sign 	 A 
 � A � � AA† � γ5 sign 	 H 
 , where H � γ5A
is hermitian Wilson Dirac operator. In order to improve the accuracy and performance about one
hundred lowest eigenmodes of H were projected out. Note that the eigenvalues of (1.1) lie on the
circle of radius ρ centered at 	 ρ � 0 
 in the complex plane. In order to relate them with continuous
eigenvalues of the Dirac operator the circle was stereographically projected onto the imaginary
axis [3]. The information about statistics and number of gauge field configurations used can be
found in [4].

Below we discuss localization properties of eigenmodes of the overlap Dirac operator. A
natural measure of the localization is provided by the inverse participation ratio (IPR) Iλ which is
defined as follows (for review see for example Ref. [5]). Let

ρλ 	 x 
 � ψ†
λ 	 x 
 ψλ 	 x 
 � ∑

x
ρλ 	 x 
 � 1 �

where ψλ 	 x 
 is an eigenmode of the overlap Dirac operator in a given gauge field background with
virtuality λ , Dψλ

� λ ψλ . Then for any finite volume V the IPR Iλ is defined by

Iλ
� V ∑

x
ρ2

λ 	 x 
 � (1.2)

and characterizes the inverse fraction of sites contributing to the support of ρλ 	 x 
 . Note that for
delocalized modes ρλ 	 x 
 � 1 � V and hence Iλ

� 1, while an extremely localized mode, ρλ 	 x 
 �
δx  x0 , is characterized by Iλ

� V . Moreover, for eigenmodes localized on a fraction f of sites (so
that sup ρλ

� Vf
� f V ) we have Iλ

� V � Vf
� 1 � f .

2. Dependence of the IPR on the eigenvalue

In Fig. 1 we show IPR for various lattice spacings at fixed physical volume. Two different
effects are clearly observed. First, the IPR grows as function of λn with λn � 0, for fixed total
volume and fixed lattice spacing. Second, for sufficiently small, fixed values of λn the IPR grows
with the lattice spacing tending to zero. An alternative way of representing the growth of IPR with
a � 0 is provided by the data on Fig. 2. Here we plot the ratio, R of the densities of the eigenmodes
with IPR � 5 and with IPR � 5 for two values of the lattice spacing a. The data demonstrate that
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Figure 1: IPRs for low lying eigenmodes at various lattice spacings and fixed physical volume. The “mo-
bility edge” λcr

� 150 � 200MeV is clearly seen.
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Figure 2: The ratio of the densities of the eigenmodes with IPR � 5 to that with IPR � 5.

the observed growth of the IPR with a � 0 is due to ‘typical’ eigenmodes, not due to a few modes
with a huge value of the IPR.

Another qualitative feature of the data is existence of a kind of a ‘merging point’, λmerge �
150 � 200MeV. Namely, for λn � λmerge the values of IPR practically do not depend on the eigen-
value λn and the lattice spacing a. Note that existence of a point where all the curves giving the
dependence of the IPR on λn is also seen in the data on localization properties of eigenfunctions of
a test color scalar particle [6]. Our data indicate scaling in physical units, at least an approximate
one, of the position of the merging point.

Thus, our data on the localization properties of the low-lying eigenfunctions of the Dirac
operator indicate existence of a variety of phenomena. If we look for analogies into solid-state
physics (reviewed in, e.g., [5]) then, probably, one can find an analog to the growth of the IPR
as function of λn with diminishing λn. Indeed, it is known that if one approaches the mobility
edge, λcr

1 from above, then the IPR blows up as 	 λn � λcr 
�� α where α � 0. Note that this

1Let us remind the reader that the mobility edge is defined in terms of dependence of the IPR on the total volume of
the system, Vtot . Namely, � IPR �
	 Vtot for Vtot � ∞ below the mobility edge, λn � λcr and � IPR �
	 const for Vtot � ∞
above the mobility edge, λn � λcr. Our data on the dependence of the IPR on the total volume can be found in the
original paper [4].

143 / 3



P
o
S
(
L
A
T
2
0
0
5
)
1
4
3

Localization of Low Lying Eigenmodes for Chirally Symmetric Dirac Operator M.I. Polikarpov

 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

P
(Q

)

Q

Full
VR

Figure 3: The histogram of the distribution of the topological charge for full and vortex removed (VR)
configurations.

simple dependence holds for a fixed, large total volume Vtot and the singularity is smoothened due
to finiteness of the total volume. Now, for chiral fermions one expects that the mobility edge is
λcr
� 0. Then, the growth of the IPR with λn � 0 indicated by our data (see Fig. 1) is reminiscent

of existence of the critical exponent α in the non-relativistic case.

Since the data exhibit strong dependencies of the IPR on various variables, detailed analysis of
these dependencies goes beyond the scope of the present study (some details, though, can be found
in the original paper [4]). Here, we confine ourselves mostly to discussion of qualitative effects.
From this point of view dependence on the ultraviolet cut off, that is the lattice spacing a, seems to
be most exciting. We will discuss this point further in Sect. 4.

3. Removing of central vortices

The vortex-removing procedure [7] drastically changes the properties of the vacuum: con-
finement and chiral condensate disappear. Below we describe how the vortex removing acts on
topological susceptibility of the vacuum, distribution of the Dirac operator eigenvalues and local-
ization properties of the eigenmodes. On Fig.3 we show the distribution of the topological charge
for full and vortex-removed configurations. It occurs that topological susceptibility, � Q2 � V � ,
vanishes after removing of the center vortices. The topological charge of the configuration was
defined by the index of overlap Dirac operator Q � n � � n � and n � is the number of exact zero
modes with positive (negative) chirality.

On Fig.4 (left) we show the quantity � πρ 	 λ 
 � 1
3 which is related to chiral condensate through

the Banks-Casher relation [8],
�
ψ̄ψ � � � πρ 	 λn � 0 
 , where ρ 	 λn � 0 
 is the density of the (de-

localized) zero modes in the limit of infinite volume V . For finite lattice volumes these modes are
near-zero and this is the reason of the limit λn � 0. It is seen that for the vortex removed config-
urations there exist the gap in the distribution of the near-zero eigenvalues, thus chiral condensate
vanishes for vortex removed gauge fields.

On Fig.4 (right) IPR for full and vortex removed configurations is shown. After vortex remov-
ing all modes (except of a few surviving zero modes) become delocalized, 	 IPR 
 � 1.
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Figure 4: � πρ
�
λ � � 1

3 (left) and IPR (right) for full and vortex removed (VR) configurations. The average
is taken over 200 gauge field configurations at β � 2 � 5 on lattice 163 � 18.

Thus, we can conclude that the non-trivial localization properties of the eigenfunctions of the
Dirac operator are directly related to the central vortices. Note that similar observations were made
by using other types of lattice fermions, see in particular [9] and references therein.

4. Discussions

The most striking feature exhibited by the data is a strong dependence of the IPR on the lattice
spacing a. The data were fitted [4] by

Iλ
� b0 � b1 � ad � 4 � (4.1)

where b0  1 � d are constants to be determined from the fit. The IPR data for the low lying modes
strongly suggest that

d � 0 � (4.2)

In other words, the volume occupied by the eigenfunctions tends to zero in physical units as a4.
Note that the a dependence of the IPR was suggested first by the data of Ref. [10]. The lattice-

spacing dependence exhibited by our data is considerably stronger than that reported in Ref. [10].
In particular, in Ref. [10] the values of IPR were changing, say, between 	 IPR 
 � 2 and 	 IPR 
 � 3
as a result of varying the lattice spacing. In our case, the highest values of IPR are approaching the
value of 20. At this moment, it is difficult to clarify the reason for this difference. First, we use
different types of fermions. Also, the color group is different, as well as the lattice action used.

The strong a dependence of the IPR is in sharp contrast with scaling, in physical units, of the
density of states and of the chiral condensate (defined through the Casher-Banks relation). Thus,
the emerging picture is that the size of the eigenfunctions shrinks strongly with a � 0 while the
eigenvalues remain stable. In other words, the data suggest that the phenomenon of fine tuning is
quite a common feature of the Yang-Mills dynamics 2.

2The standard definition of the fine tuning, which goes back to the Higgs physics, is as follows. If a relativistic
system has a typical size r0 then the energy levels of order λ 	 1 � r0 are ‘natural’. If, on the other hand, λ � 1 � r0 the
level is ‘fine tuned’.
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Note that the phenomenon of the fine tuning was observed first by studying the properties of the
lattice monopoles and vortices, for a review see, e.g., [11]. However the definition of the monopoles
and vortices involves projected fields which makes theoretical interpretation more difficult. The fine
tuning seen in the data on the fermion localization is defined in explicitly gauge invariant terms.
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