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agreement almost down to the critical temperature of the deconfinement phase transition.
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1. Introduction

The interest in QCD at temperaturesT larger than (a few) hundred MeV is triggered not
only by purely theoretical reasons, but also by ongoing heavy ion collision experiments, and by
cosmology. Given asymptotic freedom, a weak coupling expansion of this high-temperature phase
seems well within reach. In practice, however, this expansion converges only slowly, and even
shows a non-trivial analytic structure in the gauge couplingg2.

By now, the problematic degrees of freedom have been identified. They aresoft gauge-field
modes with typical momentap∼ gT, which give rise to odd powers ing, as well asultrasoftmodes
p∼ g2T, which enter the series via non-perturbative coefficients. For parametrically small values
of the couplingg, these scales are well separated, such that an effective field theory treatment
becomes feasible.

The general picture is that perturbation theory should work fine for parametricallyhardscales
p ∼ 2πT, while soft and ultrasoft scales need improved analytic schemes, or non-perturbative
treatment. We will work within dimensionally reduced effective theories, in order to treat these
different physical contributions separately, in a consistent scheme with controllable errors.

It appears mandatory to give quantitative evidence for the general picture sketched above. To
this end, the strategy is to pick some simple observables and compare, as a function ofT, full
results (e.g. from 4d lattice QCD simulations [1]) with predictionsfrom the soft/ultrasoft effective
theory setup, which should be exact for asymptotically large temperatures. This has been done for
e.g. static correlation lengths [2], and in general agreement was found down toT ∼ 2Tc, whereTc

is the deconfinement phase transition temperature.
As another concrete example of an observable allowing for an unambiguous comparison, we

discuss the spatial string tensionσs in this paper. It is defined in a manifestly gauge invariant way
as the coefficient in the area law of a large rectangular Wilson loopWs(R1,R2) in (x1,x2) plane,

σs≡− lim
R1→∞

lim
R2→∞

1
R1R2

lnWs(R1,R2) . (1.1)

It has been measured in SU(3) on the 4d lattice, as a function of the temperatureT (e.g. Ref. [1]),
√

σs

T
= φa

(
T
Tc

)
. (1.2)

Our aim here is to get the effective theory prediction forσs, and to compare it with the lattice
data, in order to assess the performance of the effective theory setup [3]. In the following two sec-
tions, we sketch the 2-step perturbative matching process of 4d QCD onto 3d M(agnetostatic)QCD,
and discuss convergence properties. In section4, we take existing data onσs from 3d lattice
MQCD, match it to 4d QCD, and compare with the 4d lattice data.

2. Effective theory setup: QCD→ EQCD

At high temperatures, all QCD dynamics is contained in a simpler, three-dimensional effective
field theory called EQCD,

LE =
1
2

TrF2
kl +Tr [Dk,A0]2 +m2

ETrA2
0 +λ

(1)
E (TrA2

0)
2 +λ

(2)
E TrA4

0 + ... , (2.1)
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whereFkl = i[Dk,Dl ]/gE, Dk = ∂k− igEAk with the dimensionful 3d gauge couplinggE, and the
dots represent higher-order operators. In order to correctly describe all contributions from hard
and soft scales, the parameters of 3d EQCD have to be regarded as matching coefficients, and are
therefore related to the parameters of full QCD (beingg2, T, Nc, Nf , µq, mq). Perturbative matching
[4] gives, schematically,

m2
E = T2{

#g2 +#g4 + ...
}

, (2.2)

λ
(1),(2)
E = T

{
#g4 +#g6 + ...

}
, (2.3)

g2
E = T

{
g2 +#g4 +#g6 + ...

}
, (2.4)

where all coefficients symbolized by “#” above are known. Most can be conveniently read from
e.g. Ref. [5], while theg6 term in the last line has been obtained only recently [3]. Higher-order
coefficients could be obtained straightforwardly from the next order in the loop expansion.

There are also higher-order operators [6] in EQCD which become important at some point. In
general, their relative magnitude can be estimated as [5]

δLE∼ g2 DkDl

(2πT)2LE∼ g2 (g2T)2

(2πT)2LE , (2.5)

where we assumed to be considering an observable dominated by the ultrasoft scalep∼ g2T. Thus,
the relative magnitude is at most∼ g6, smaller than any known terms in Eqs. (2.2)–(2.4).

At this point, having the first few terms of the perturbative series of, say,g2
E = g2

E(g2,T) at
hand, one may ask about its convergence properties. In practice, renormalization is needed of
course: letg2 = g2(µ̄) be the (4d QCD)MS coupling. From the solution of the 2-loop renormal-
ization group equation, we define theMS scale parameter as usual, and find the 2-loop running
coupling as a function of̄µ/ΛMS,

ΛMS ≡ lim
µ̄→∞

µ̄

[
b0g2(µ̄)

]−b1/2b2
0
exp

[
− 1

2b0g2(µ̄)

]
, (2.6)

1
g2(µ̄)

≈ 2b0 ln
µ̄

ΛMS

+
b1

b0
ln

(
2ln

µ̄

ΛMS

)
, (2.7)

whereb0 ≡ −β0/2(4π)2, b1 ≡ −β1/2(4π)4 are coefficients of the QCD beta function. Hence,
we can now writeg2

E = g2
E(µ̄,ΛMS,T) = T φb(µ̄/T,T/ΛMS) as a function of two dimensionless

variables.
Formally, the renormalization scale dependence is of higher order, while numerically, there

is µ̄ dependence due to our truncation of the perturbative series. We are free to choose some
optimization procedure, e.g. theprinciple of minimal sensitivity, according to which we choosēµopt

as the extremum of the 1-loop expression forg2
E. This leaves usg2

E = T φc(T/ΛMS) as a function
of one variable only, which is plotted in the left panel of Fig.1 for Nf = 3. Comparing 1-loop
and 2-loop expressions (the gray band shows the effect of a scale variation withinµ̄ = (0.5...2.0)×
µ̄opt), note that the process of perturbative matching shows very comforting convergence properties:
corrections are in the 10-20% range, and scale dependence gets significantly reduced.

In the right panel of Fig.1, we show the effective gauge couplingαeff
s ≡ g2

E/4πT of EQCD,
for severalNf , in a much smaller temperature interval close to the phase transition temperature
Tc∼ΛMS. Noting that this 3d effective coupling is reasonably small even at these low temperatures,
we are led yet again to observe that treating the hard modes perturbatively appears well justified.
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Figure 1: Left panel:The 1- and 2-loop values for g2
E/T. For each T, the scalēµ has been fixed tōµopt as

explained in the text. The gray band corresponds to a variation ofµ̄opt within a factor of two.Right panel:

The effective 2-loop gauge coupling of EQCD,α
eff
s ≡ g2

E/4πT, for various values of Nf . Scale dependence
results fromµ̄opt variation as before. Note the different ranges of temperatures on the horizontal axes.

3. Effective theory setup: EQCD→ MQCD

The low-energy behaviour of 3d EQCD is contained in another three-dimensional effective
field theory, called MQCD,

LM =
1
2

TrF2
kl + ... . (3.1)

As before, the dots stand for higher-order operators, while the matching coefficients can be deter-
mined perturbatively [7, 3]

g2
M = g2

E

{
1+#

g2
E

mE
+#

g4
E

m2
E

+#
g2

Eλ
(1),(2)
E

m2
E

+ ...

}
. (3.2)

Let us note here – without showing the corresponding plot – that this expansion converges ex-
tremely well, even close toTc. Hence, we can safely ignore higher loop corrections forg2

M .
The higher-order operators of MQCD,

δLM ∼ g2
E

DkDl

m3
E

LM ∼ g2
E
(g2T)2

m3
E

LM , (3.3)

give a relative contribution parametrically smaller than any of the known terms in Eq. (3.2), and
will be neglected in the following.

4. Results

We are now in a position to write down the effective theory prediction for the spatial string
tensionσs, Eq. (1.1). The observableσs exists not only in 4d QCD, but also in 3d SU(3) gauge
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Figure 2: Comparison of 4d lattice data for the spatial string tension [1] with expressions obtained by
combining 1-loop and 2-loop results for g2

E together with Eq. (3.2) and the non-perturbative value of the
string tension of 3d SU(3) gauge theory, Eq. (4.1). The upper edges of the bands correspond to Tc/ΛMS =
1.35, the lower edges to Tc/ΛMS = 1.10.

theory, which is nothing but MQCD, Eq. (3.1). Since the 3d gauge coupling is dimensionful, and
furthermore is the only scale that MQCD possesses, naive dimensional analysis dictatesσs = #g4

M .
The proportionality constant is non-perturbative, and can be measured by 3d lattice simulations.
Taking most recent lattice data [8],

√
σs

g2
M

= 0.553(1) . (4.1)

To compare with the 4d lattice results of the form shown in Eq. (1.2) (see Fig.2), we need to
relateg2

M andT. First, using Eq. (3.2) and Eqs. (2.2)–(2.4),

√
σs

T
= 0.553(1)

g2
M

g2
E

g2
E

T
= φd

(
T

ΛMS

)
. (4.2)

Next, we need to relateΛMS andTc. This is in fact a classic problem in (4d) lattice QCD. One line
of measurements [9] employs theT = 0 string tension to get [10]

Tc

ΛMS

=
Tc/
√

σ

ΛMS/
√

σ
= 1.16(4) , (4.3)

while another possibility is to go via the Sommer scale [11]

Tc

ΛMS

=
r0Tc

r0ΛMS

= 1.25(10) . (4.4)

To be conservative, we will consider the intervalTc/ΛMS = 1.10...1.35, which also incorporates the
result of Ref. [12].

P
o

S
(L

A
T

2
0

0
5

)1
8

0

180 / 5



Spatial string tension revisited York Schröder

In Fig. 2, we finally compare the 3d effective theory prediction forσs (gray bands) with the 4d
lattice data (black dots). As a caveat, note that the lattice data has not been extrapolated to the con-
tinuum limit. On the other hand, we stress that the comparison is parameter-free. We may take the
excellent agreement of the 2-loop prediction with the lattice data as support for hard/soft+ultrasoft
picture of thermal QCD.

To conclude, we have given yet another example of a static observable in thermal QCD, for
which the program of dimensional reduction works well, even down to temperaturesT ∼ 2Tc.
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