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1. Spectral functions

The recent experimental progress in the recreation of the quark gluon plasma in relativistic
heavy ion collisions (see e.g. [1]) has been an important stimulus for lattice studies of spectral
functions in the high-temperature phase of QCD. Topics discussed so far (ordered according to
increasing difficulty) include the persistent presence of charmonium bound states above the decon-
finement transition [2, 3, 4], the thermal dilepton rate [5], and transport coefficients, such as the
electrical conductivity [6] and the shear viscosity [7]. In spectral function calculations soft energies
ω . T are of particular interest, since this is where one expects e.g. nonperturbative medium ef-
fects and collective excitations, predicted by perturbative studies of hot QCD. Moreover, transport
coefficients follow from current-current spectral functions in the limit of vanishing energy (Kubo
relations). So far numerical results for the soft energy region in the high-temperature phase are
rather scarce. For the dilepton rate, it was found [5] (surprisingly) that the spectral function in
the vector channel ρV(ω,0) is consistent with zero when ω . 2T . For the electrical conductivity,
ρ ii(ω,0) was reconstructed at low energies [6] and a structure resembling analytical expectations
[8] was obtained.

However, numerically determined euclidean correlators GH(τ,p) do not easily provide knowl-
edge of spectral functions at soft energies. In fact, they are largely insensitive to details of ρH(ω,p)

in this region because the kernel K, which relates GH and ρH via

GH(τ,p) =
∫ ∞

0

dω
2π

K(τ,ω)ρH(ω,p), K(τ,ω) =
cosh[ω(τ −1/2T )]

sinh(ω/2T )
, (1.1)

becomes independent of τ for smaller energies (K(τ,ω) ∼ 2T/ω when ω � T ). It follows in
particular that lattice correlators are remarkably insensitive to transport coefficients [8] (see ref.
[9] for a recent analysis reaching the same conclusion). In view of the experimental results on the
strongly interacting QGP, suggesting e.g. a surprisingly small shear viscosity, it is important to gain
more experience in the reconstruction of spectral functions at energies ω . T from lattice QCD.

Good candidates for such studies are meson spectral functions at nonzero momentum p [10].
Because of the presence of the lightcone at ω = p and the nontrivial spectral weight below the
lightcone, commonly referred to as Landau damping and due to the scattering of quarks with off-
shell gauge bosons, they are expected to have an interesting structure at soft energies. By choosing
the nonzero momentum p of the order of T or larger, the region below the lightcone can be made
sufficiently large and (part of) the difficulties present for transport coefficients, inherent in the strict
limit ω → 0, can be circumvented. In order to provide a reference point for such calculations, we
studied meson spectral functions at nonzero momentum in the infinite temperature limit, both in
the continuum and on the lattice for Wilson and staggered (naive) fermions [10]. A similar study
at zero momentum can be found in ref. [11]. Below we summarize some of our findings. In the
outlook we report on ongoing work in quenched QCD with staggered fermions.

2. Infinite temperature

We consider meson spectral functions ρH(t,x) = 〈[JH(t,x),J†
H(0,0]〉 at leading order in the

loop expansion. The currents in the various channels are given by JH(t,x) = q̄(t,x)ΓHq(t,x) with
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ΓH = {11,γ5,γµ ,γµγ5}. In the continuum the one-loop integral

ρH(ω,p) = −2Im T ∑
l∈Z

∫

d3k
(2π)3 tr S(iω̃l,k)ΓHS(iωn + iω̃l,p+k)γ0Γ†

Hγ0
∣

∣

∣

iωn→ω+i0+
, (2.1)

where S(iω̃l,k) is the fermion propagator, can be done analytically, for arbitrary external momen-
tum p and fermion mass m. Since the outcome is rather lengthy, we refer to ref. [10] for detailed
expressions. On the lattice completely analytical results are not available, but simple expressions
which are easily evaluated numerically can be given. In order to do so, we use a ’mixed’ represen-
tation [12] and write the fermion propagator as S(τ,k) = γ4S4(τ,k)+ ∑3

i=1 γiSi(τ,k)+ 11Su(τ,k).
For Wilson fermions, the S(τ,k) functions depend on τ via sinh(τ̃Ek) and cosh(τ̃Ek), where
τ̃ = τ − 1/2T , which makes it straightforward to arrive at the relationship (1.1), also on a finite
lattice. The resulting spectral functions are then given by a sum over the spatial lattice momenta,
which can be done numerically.

For naive fermions there are a few changes, due to the time doublers. The hyperbolic functions
are now multiplied with the staggering factors 1± (−1)τ/aτ , such that relation (1.1) is modified to

GH(τ,p) = 2
∫ ∞

0

dω
2π

K(τ,ω)
[

ρH(ω,p)− (−1)τ/aτ ρ̃H(ω,p)
]

, (2.2)

where K is again the same kernel as in the continuum. The staggered partner ρ̃H is related to ρH

via the replacement ΓH → Γ̃H = γ4γ5ΓH .
We now discuss several characteristics. It is expected from naive dimensional arguments that

meson spectral functions increase with ω2 for large ω . This is demonstrated in fig. 1 (top), where
we show the (pseudo)scalar spectral functions ρPS,S(ω,p), normalized with ω2, in the continuum
and on the lattice for finite Nτ = 16. In order to approximate the thermodynamic limit, Nσ is
taken very large, typically ∼ 2000 [10]. We only show results for isotropic lattices here, results
for anisotropic lattices can be found in ref. [10]. The cusps at larger energies are due to the finite
Brillouin zone and are therefore lattice artefacts. They are located at ω = Ek−p/2 +Ek+p/2 ≈ 2Ek,
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Figure 1: Pseudoscalar and scalar spectral functions ρPS,S(ω ,p)/ω2 (top) and charge density spectral func-
tions ρ00(ω ,p)/T 2 (bottom) as a function of ω/T .
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Figure 2: Low energy region of ρPS,S(ω ,p), normalized with T 2, from fig. 1 (top) and ρV,A(ω ,p), normal-
ized with T 2 sinh(ω/2T ), (bottom) as a function of ω/T .

with k = (π/a,0,0),(π/a,π/a,0) + permutations for Wilson fermions. The maximal energy is
determined by k = (π/a,π/a,π/a) (k = (π/2a,π/2a,π/2a) for staggered fermions). For Wilson
fermions ρPS and ρS differ, due to the presence of the Wilson mass term, while for staggered and
continuum fermions they are degenerate for larger energies.

Charge density spectral functions do not increase with ω 2, but instead reach a constant value:
ρ00(ω,p) → Nc p2/6π (vector charge density) and ρ00

5 (ω,p) → Nc(p2 + 6m2)/6π (axial charge
density). Note that this is relevant for the choice of default model in the Maximal Entropy Method
[13]. For the vector charge density, this large energy behaviour follows from current conserva-
tion. In fact, at zero momentum current conservation completely fixes the charge density spectral
function to be ρ00(ω,0) = 2πχωδ (ω), where χ is the charge susceptibility. The corresponding
euclidean correlator is then constant, G00(τ,0) = T χ . On the lattice these expressions only hold
when the conserved current is used, and not the local one. The continuum and lattice spectral func-
tions ρ00 are compared in fig. 1 (bottom) for nonzero p = 4T . Note that the local definition is used
here. The staggered result appears to track the continuum one up to larger energies than the one
obtained with Wilson fermions.

Clearly visible in fig. 1 is the lightcone is at ω = p = 4T and the spectral weight below the
lightcone. In the (pseudo)scalar channel, a better way to view this physically interesting region is
by normalizing ρPS,S(ω,p) with T 2 instead of with ω2. The result is shown in fig. 2 (top). The
spectral functions increase linearly with ω for small ω and vanish at the lightcone. There is a gap
when p < ω <

√

p2 +4m2 (higher loop corrections will fill this gap). The scalar and pseudoscalar
spectral functions differ due to the nonzero quark mass. Again the staggered result compares better
with the continuum one. The main lattice artefact in this region is the mismatch between the
continuum and the lattice lightcone, which can be quite substantial.

A very convenient way to present both the low and the high energy behaviour of spectral
functions in one figure is to show ρH(ω,p)/sinh(ω/2T ), i.e. the integrand in eq. (1.1) at the
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Figure 3: Euclidean correlators in the pseudoscalar (π), scalar (σ ) and local vector (ρ , averaged over
i = 1,2,3) channel for three values of the staggered fermion mass (in lattice units) in quenched QCD on a
lattice with T ≈ 160 MeV (top) and T ≈ 420 MeV (bottom).

midpoint τ = 1/2T . This combination takes a finite value when ω → 0 and vanishes exponentially
for large ω . We show ρV = ρ ii −ρ00 and ρA = ρ ii

5 −ρ00
5 in fig. 2 (bottom). The lattice artefacts

at large ω are now exponentially suppressed, which implies that the euclidean correlator around
τ = 1/2T is not very sensitive to those. Finally, the area under the two curves is identical, which
follows from a surprising relation (“sum rule”) at this order in the loop expansion [10].

3. Outlook

In Fig. 3 we show preliminary results from a quenched simulation with staggered lattice
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fermions. To facilitate comparison of hadron correlators at differing temperatures, the lattice pa-
rameters have been chosen to reproduce temperatures both below (β = 6.5, 483 × 24) and above
(β = 7.192, 643 × 24) the deconfining temperature with the same number of temporal spacings
Nτ = 24. The data shown are for zero spatial momentum; comparison of the π and σ -propagators
between the two sets, particularly for the lightest mass ma = 0.01 (shown in red), show clear evi-
dence for chiral symmetry restoration in the deconfined phase. A spectral function analysis of these
data using the Maximal Entropy Method is in progress.
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