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We study charmonia correlators at finite temperature. We analyze to what extent heavy quarkonia

correlators are sensitive to the effect of heavy quark transport and whether it is possible to con-

strain the heavy quark diffusion constant by lattice calculations. Preliminary lattice calculations

of quarkonia correlators performed on anisotropic lattices show that they are sensitive to the effect

of heavy quark transport, but much detailed calculations are required to constrain the value of the

heavy quark diffusion constant.
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1. Introduction

There are plenty of experimental evidence that strongly interacting matter at high energy den-
sity has been produced at RHIC [1, 2]. One of the most exciting results from RHIC so far is the
large azimuthal anisotropy of light hadrons with respect to the reaction plane, known as elliptic
flow. The observed elliptic flow is well described by ideal hydrodynamics [3, 4, 5] suggesting
early equilibration of the produced matter and very short transport mean free path. This interpre-
tation of the experimental data can be challenged by measuring elliptic flow of charm and bottom
mesons [6, 7]. The first experimental results show a non-zero elliptic flow for these heavy mesons.
Naively, since the quark mass is significantly larger than the temperature of the medium, the mean
free pass of heavy mesons is � M

�
T longer than the light hadron mean free path. Quantitatively

the mean free path is described by the heavy quark diffusion constant which can be defined through
the diffusion equation for the heavy quark number density N � x � t � , ∂t N � D∇2N � 0. If the heavy
quark diffusion constant D � 1

�
T , the predicted heavy quark elliptic flow will be too small and in

contradiction with current experimental data [8].
Kubo formulas relate hydrodynamic transport coefficients to the small frequency behavior

of real time correlation functions [9, 10]. Correlation functions in real time are in turn related
to correlation functions in imaginary time by analytic continuation. Karsch and Wyld [11] first
attempted to use this connection to extract the shear viscosity of QCD from the lattice. More
recently, additional attempts to extract the shear viscosity [12, 13] and electric conductivity [14]
have been made. It turns out that Euclidean correlations functions are remarkably insensitive to
transport coefficients. For weakly coupled field theories this has been discussed by Aarts and
Martinez Resco [15]. For this reason, only precise lattice data and a comprehensive understanding
of the different contributions to the Euclidean correlator can constrain the transport coefficients. It
appears that heavy quarkonia correlators are the likely candidates for meeting this conditions.

2. Euclidean and real time correlators

On the lattice we calculate correlation function of local meson operators ( currents ) J h
E � x � τ ���

q̄ � x � τ � Γhq � x � τ � at finite temperature

Gh � k � τ � T �	��
 d3xeik � x 
 Jh
E � x � τ � Jh

E � 0 � 0 �����
with Γh being some combination of the Dirac matrices. This correlation function is related to the
real time correlation functions D �h � x � t � T ����� Jh � x � t � Jh � 0 � 0 ��� , D �h � x � t � T �	��� Jh � 0 � 0 � Jh � x � t ��� .

The most important channels for our further discussion are the pseudo-scalar, Γh � γ5 and the
vector, Γh � γµ channels. In the vector channel the Euclidean correlators are related to density-
density correlator D �NN ��� N � x � t � N � 0 � 0 ��� and current-current correlators D � i j

JJ ��� Ji � x � t � J j � 0 � 0 ��� ,
G00 � x � τ � T �	��� J0

E � x � τ � J0
E � 0 � 0 ������� D �NN � x ��� iτ � T � � (2.1)

Gi j � x � τ � T �!� 
 Ji
E � x � τ � J j

E � 0 � 0 � � � D � � i j
JJ � x ��� iτ � T � " (2.2)

Similarly for the pseudo-scalar channel G5 � x � τ � T �#�$� J5
E � x � τ � J5

E � 0 � 0 ����� D �5 � x ��� iτ � T � . The
minus sign in Eq. (2.1) comes from the relation A0 �%� iA0

E between the temporal component of
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the vector in Minkowski space and Euclidean space, in particular x0 �%� ix0
E ��� iτ . The spectral

function is defined through Fourier transform of D �h and D �h or equivalently as imaginary mart of
the retarded correlator χh � k � ω �

ρhh � k � ω � T �	� D �h � k � ω � T � � D �h � k � ω � T �
2π

� 1
π

Imχh � k � ω � T � " (2.3)

Using the Kubo-Martin Schwinger (KMS) relation D �h � k � t � � D �h � k � t � i
�
T � , and its Fourier

counter-part D �h � k � ω � � e
� ω � T D �h � k � ω � , one discovers the relation between the spectral density

and the Euclidean correlator,

Gh � k � τ � T �!��� � i � r 
 ∞

0
dω ρh � k � ω � T � cosh � ω � τ � 1

2T ���
sinh � ω

2T � " (2.4)

Here r is number of zeros in the space-time indexes.

3. Lattice results on the charmonia correlators and spectral functions

Charmonia correlators have been studied in lattice QCD and the corresponding spectral func-
tions were reconstructed using the Maximal Entropy Method (MEM) [17, 18, 19]. These studies
showed that the 1S states (ηc and J

�
ψ) survive in the plasma up to temperatures as high as 1 " 6Tc.

Though it is quite difficult to reliably reconstruct the spectral functions, the temperature depen-
dence of the correlators can be determined quite precisely [19].

We calculated charmonia correlators on quenched anisotropic lattices using the Fermilab for-
mulation for heavy quarks [16]. Calculation were done at β � 6 " 5 and ξ � as

�
at � 4, corresponding

to temporal lattice spacing a � 1
t � 14 " 12GeV when we set the spatial lattice spacing as using the

Sommer scale r0 � 0 " 5fm. We collected about 1000 gauge configurations at each temperature.
From Eq. (2.4) it is clear that the temperature dependence of the correlator Gh � k � τ � T � comes
from temperature dependence of the spectral function and temperature dependence of the kernel

K � τ � ω � T � � cosh � ω � τ � 1
2T ���

sinh � ω
2T � . To separate out the trivial temperature dependence due to the kernel

K � τ � ω � T � , following [19] we introduce the reconstructed correlator

Gh
rec � k � τ � T �	��
 ∞

0
dω ρh � k � ω � T � 0 � K � τ � ω � T ��" (3.1)

If the charmonia spectral function do not change across the deconfinement transition temperature
Tc we expect Gh � Gh

rec � 1. In Fig. 1 we show the temperature dependence of Gh � Gh
rec for pseudo-

scalar and vector channels at zero spatial momentum k � 0. In the vector channel we show both
sum over all spatial components ∑i G

ii and the sum over all four components ∑µ Gµµ . We see
that the temperature dependence of the vector and pseudo-scalar correlarors is quite different. For
T � 1 " 5Tc we see only very small deviations from unity for Gh � Gh

rec in the pseudo-scalar channel
while significant deviations are seen in the vector channel. In fact similar temperature dependence
of the vector correlator was seen in the previous study based on fine isotropic lattices [19, 20]. This
is quite unexpected as ηc and J

�
ψ should have similar properties both in the vacuum and in the

medium. We will give an explanation for this difference in the next section in terms of heavy quark
transport.
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Figure 1: The ratio G � Grec for pseudo-scalar (left) and vector (right) channels at k � 0. For the vector case
we show both the sum over spatial components (filled symbols) and all four components (open symbols).

4. Spectral functions at low energies and heavy quark transport

As vector current is a conserved current there should be transport contribution to the corre-
sponding spectral function. In general the vector spectral function can be decomposed in terms of
transverse ρT � k � ω � T � and longitudinal ρL � k � ω � T � components. Since the heavy quark mass is
much larger than the temperature M � T we can write ρ L � T � k � ω � T � � ρL � T

low � k � ω � T � � ρL � T
high � k � ω � T � ,

where ρL � T
high � k � ω � T � contains the resonances and the continuum, and is non-zero for energies

ω � 2M, and ρL � T
low � k � ω � T � is the transport contribution. The simplest way to estimate ρlow � k � ω � T �

is to evaluate the vector correlator at 1-loop level [21]. In the k � 0 limit we have ρ T � 0 � ω � T � �
ρL � 0 � ω � T �	� ρ ii � 0 � ω � T � , and considering small energies, ω � T we get

ρ ii
low � 0 � ω � T �	� χs � T � T

M
ωδ � ω ��� ρ00

low � 0 � ω � T �	� χs � T � ωδ � ω ��" (4.1)

Here χs � T � is the static charm number susceptibility, which in the limit M � T is given by χs � T � �
12 � MT

2π � 3 � 2
e � M � T . Thus at finite temperature we expect that the ∑i Gii should be enhanced by a

constant contribution 3χs � T � T �
M relative to its T � 0 value, while the ∑µ Gµµ should reduced

by � χs � T � � 1 � 3T
�
M � (recall Eq. (2.1)). This is exactly what the lattice data in Fig. 1 show.

Furthermore, from data on ∑i G
ii and ∑µ Gµµ we can estimate that M

�
T � 6 at 1 " 5Tc. The 1-

loop result for the vector correlator can be also obtained using collisionless Boltzmann equation
describing free streaming of heavy quarks with no interaction with the plasma [21]. This 1-loop
contribution happens to dominate the transport part of the Euclidean correlator [21].

5. Effective Langevin equation for heavy quark transport

We have seen that the leading transport contribution to the Euclidean correlator is just a con-
stant and corresponds to free streaming of heavy quarks. To get the transport coefficient we need
to include the effect of heavy quark interactions with the medium. It is very difficult problem in
general. Luckily, the case of heavy quarks is special since the time scale for diffusion, M

�
T 2, is

much longer than any other time scale in the problem. In terms of the spectral functions, this sep-
aration means that transport processes contribute at small energy, ω � T 2 � M. For this reason we
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Figure 2: The low energy longitudinal spectral function ρ L
low � k � ω � T � (left) and the low energy contribution

to the correlator (right). Here ω̄ � ω � M � T � and k̄ � kD � M � T .

will assume that the Langevin equations provide a good macroscopic description of the dynamics
of charm quarks [8],

dxi

dt
� pi

M
� d pi

dt
� ξ i � t � � η pi � � ξ i � t � ξ j � t � ���!� κδ i jδ � t � t � � " (5.1)

The drag and fluctuation coefficients are related by the fluctuation dissipation relation η � κ
2MT .

For time scales which are much larger than 1
�
η the heavy quark number density obeys ordinary

diffusion equation ∂t N � D∇2N � 0. The drag coefficient η can be related to the diffusion coeffi-
cient through the Einstein relation D � T

Mη � 2T 2

κ .
The Langevin equations make a definite prediction for the retarded correlator χh at small ω

and thus for the transport part of the spectral functions [21]. The results of calculation for the
longitudinal spectral functions is shown in Fig. 2. For the case of zero spatial momentum k � 0 we
have

ρ ii
low � 0 � ω � T �

ω
� χs � T � T

M
1
π

η
ω2 � η2

� ρ00
low � 0 � ω � T �

ω
� χs � T � δ � ω ��" (5.2)

From Eq. (5.2) it is clear that to calculate the transport coefficient we have to determine the curva-
ture of Gii � k � 0 � τ � T � at τ � 1

� � 2T � due to the low energy part of the spectral function ρ ii
low. If

ρ ii
low was the only contribution to the spectral function and η � 0 the correlator would be constant.

The question is how to determine the small curvature in Gii � k � 0 � τ � T � , arising from finite value
of η , from the curvature arising from the resonance and continuum contributions. This can be done
by introducing a small chemical potential for the heavy quark, µ � M. Since the transport con-
tribution is proportional to χs, the small chemical potential will enhance the transport by factor of
cosh � µ � T � [21]. The small charm chemical potential will not affect the resonance and continuum
contributions to the spectral function to leading order in the heavy quark density, � e ��� M � µ � � T .
Thus we expect that

δGii � Gii � τ � T � µ � � Gii � τ � T � 0 �
� � cosh � µ � T � � 1 � 
 ∞

0
dω ρ ii

low 		 µ 
 0 � 0 � ω � T � cosh � ω � τ � 1
� � 2T �����

sinh � ω � � 2T ��� � (5.3)
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is largely insensitive to the high frequency behavior of the spectral function. In Fig. 2 we show
δGii quantity for several values of D. The numerical results on the vector correlator show that it can
be calculated with 0 " 5% statistical accuracy. Thus if similar numerical accuracy can be achieved
for the difference δGii, the curvature and thus the η , or equivalently D can be estimated in lattice
QCD.
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