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The QCD free energy can be studied by dimensional reduction to a three-dimensional (3d) ef-

fective theory, whereby non-perturbative lattice simulations become less demanding. To connect

to the original QCD a perturbative matching computation is required, which is conventionally

carried out in dimensional regularization. Therefore the 3d lattice results need to be converted to

this regularization scheme as well. The conversion must be carried up to 4-loop order, where the

free energy displays an infrared (IR) singularity. We therefore need a regulator which can be im-

plemented both on the lattice and in the continuum computation. We introduce a mass regulator

to perform Numerical Stochastic Perturbation Theory computations. Covariant gauge is fixed in

the Faddeev-Popov scheme without introducing any ghost fields.
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1. Introduction

As is well known, finite-temperature QCD seems to show two different phases: it is confining
at low temperatures (the realm of mesons and baryons) while asymptotic freedom and a quark-
gluon plasma are expected to appear in the high-temperatureregime. A good observable to witness
the change is the QCD free energy density, given essentiallyby the familiar Stefan-Boltzmann law
of blackbody radiation, multiplied by the number of light effective degrees of freedom.

To study the free energy density requires different methodsin different regimes. At low tem-
peratures the problem has to be treated with numerical lattice simulations, while at high tempera-
tures perturbation theory should allow at least for some progress, given that the coupling constant
g is small. Nevertheless, even for smallg, certain coefficients in the weak-coupling expansion do
remain non-perturbative [1], and can only be determined with numerical techniques.

In the high-temperature regime, the theory contains three different momentum scales [2],
namelyT (hard modes),gT (soft modes) andg2T (ultrasoft modes). The contribution of each
of these modes is best isolated in an effective theory setup.This is accomplished viadimensional
reduction[2, 3, 4] by integrating out the hard and soft modes to obtain a3d pure Yang-Mills SU(3)
theory (“MQCD”). MQCD can then be analysed on the lattice andthe results can be added to the
various perturbative contributions to obtain the completeanswer.

To add the MQCD lattice results to the perturbative ones, we need to change regularization
scheme from lattice to dimensional regularization. To thisaim, a matching between lattice and
continuum computations is needed and this is achieved by means of Lattice Perturbation Theory
applied to MQCD. The strategy we adopt for this purpose here is the one ofNumerical Stochastic
Perturbation Theory(NSPT) developed in recent years by the Parma group.

2. The NSPT method

NSPT relies onStochastic Quantization[5] which is characterized by the introduction of an
extra coordinate, a stochastic timet, together with an evolution equation called the Langevin equa-
tion,

∂φ(x, t)
∂ t

= −
∂S[φ ]

∂φ
+ η(x, t) , (2.1)

whereη(x, t) is a Gaussian noise which effectively generates the quantumfluctuations of the theory.
The average over this noise is such that, together with the appropriate limit int, the desired

Feynman-Gibbs functional integration is reproduced:

〈
O[φη(x,t)]

〉
η

t→∞
−→

1
Z

∫
[Dφ ]O[φ(x)]e−S[φ(x)] . (2.2)

For SU(3) Yang-Mills theory, the Langevin equation becomes

∂tUη = −i
(

∇S[Uη ]+ η
)
Uη , (2.3)

guaranteeing the proper evolution of variables within the group.
In this framework, perturbation theory comes into play by means of the expansion [6]

Uη(x, t) −→ ∑
k

gk
0U

(k)
η (x, t) , (2.4)

189 / 2



P
o
S
(
L
A
T
2
0
0
5
)
1
8
9

Four-loop plaquette in 3d with a mass regulator Christian Torrero

whereg0 is the bare gauge coupling. This results in a system of coupled equations that can be
numerically solved via a discretization of the stochastic time t = nτ , whereτ is a time step. In
practice, we let the system evolve according to the Langevinequation for different values ofτ ,
average over each thermalized signal (this is the meaning ofthe above-mentioned limitt → ∞), and
then extrapolate in order to get theτ = 0 value of the desired observable. This procedure is then
repeated for different values of the various parameters appearing in the action.

3. Mass as an IR regulator

As stated above, the quantity we are interested in is the contribution to the QCD free energy
density f coming from the 3d pure SU(3) theory. On the lattice, this observable is related to the
trace of the plaquette〈1−ΠP〉, whereΠP ≡ N−1

c ReTrP andP is the elementary plaquette, via

〈1−Πp〉 =
2ad

d(d−1)

∂
∂β0

(
f
T

)
, (3.1)

with bare lattice couplingβ0 = 2Nc/(a4−dg2
0). The outcome can be expanded in powers ofβ0 as

〈1−Πp〉 =
c1

β0
+

c2

β 2
0

+
c3

β 3
0

+
c̃4

β 4
0

+O(β−5
0 ) . (3.2)

The determinations of the first three coefficients in the present setting have been discussed in
Ref. [7]. The non-perturbative value of the whole quantity has been determined with lattice si-
mulations in Ref. [8]. Terms ofO(β−5

0 ) disappear in the continuum limit, thanks to the super-
renormalizability of the theory. Thus only the fourth ordercoefficient is missing at the moment.

As shown parametrically in Ref. [1] and explicitly in Refs. [9], the coefficient̃c4 is actually IR
divergent, and consequently an appropriate regulator mustbe introduced for its determination. In
a non-perturbative setting this is provided by confinement,while in fixed-order computations one
could employ a finite volume (as in Ref. [7]) or a mass. Since the use of a mass is more convenient
in continuum computations involving dimensional regularization, we need to implement it in lattice
perturbation theory as well.

Apart from introducing a mass, we also fix the gauge in order tomatch the setting of the
continuum computations. Consequently, the functional integral is given by

Z =
∫

[Dφ ]Det
(
−∑

µ
∂̂ L

µ D̂µ [φ ]+m2
)

exp
(
−SW −SGF

)
=
∫

[Dφ ] exp
(
−SW −SGF −SFP

)
, (3.3)

where we assume the use of lattice units (i.e.a = 1), and

SW = β0∑
P

(1−ΠP)+
β0m2

4Nc
∑

x,µ ,A

φA
µ (x)φA

µ (x) , (3.4)

SGF =
β0

4Ncα ∑
x,A

[
∑
µ

∂̂ L
µ φA

µ (x)
]2

, (3.5)

SFP = −Tr
[
ln
(
−∑

µ
∂̂ L

µ D̂µ [φ ]+m2
)]

, (3.6)
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where we have followed the conventions of Ref. [10], writingin particularUµ = exp(iφµ ), φµ =

φA
µ TA, with the normalization Tr[TATB] = δ AB/2. Moreoverm is the common gluon and ghost

mass,α is the gauge parameter, andD̂µ is the discrete Faddeev-Popov operator, given by [10]

D̂µ [φ ] =

[
1+

i
2

Φµ −
1
12

Φ2
µ −

1
720

Φ4
µ −

1
30240

Φ6
µ +O(Φ8

µ)

]
∂̂ R

µ + iΦµ , (3.7)

with Φµ = φA
µ FA, where[FA]BC ≡−i f ABC are the generators of the adjoint representation.

To treat the Faddeev-Popov determinant as a part of the action means that, because of the
Langevin equation, one has to face the quantity∇SFP = −∇Tr[lnB] = −Tr[∇BB−1] with B[φ ] =

−∑µ ∂̂ L
µ D̂µ [φ ] + m2. We perform the inversion as in Ref. [11], while the trace is computed by

means of sources in the usual way.
The global strategy is then to perform simulations with lattices of different sizes at fixed mass

in order to extrapolate to infinite volume and, afterwards, to repeat this procedure for other values
of the mass. At this point, after subtracting the expected logarithmic divergence, one extrapolates
to zero mass, obtaining the needed fourth order coefficient.It is crucial to take the infinite-volume
limit before the zero-mass one because, by performing the limits in the opposite order, the final IR
regulator would be the volume and not the mass as we want.

4. First (benchmark) results

So far, the statistics we took are not sufficient to carry out the infinite-volume and zero-mass
limits for the fourth order coefficient ˜c4, but it is already possible to crosscheck the reliability of
the general method. As a first test, we compare the 1-loop numerical results for the trace of the
plaquette for the various masses with the known analytic values. As shown in Fig. 1 for a lattice
extentL = 5, the agreement between the numerical values and the analytic curve is very good.

A second check could consist of extrapolating at fixed lattice extent to zero mass, to see if one
recovers the already known coefficients [7]. Figs. 2 – 5 show these extrapolations for a lattice extent
L = 7: the fitting curve is a polynomial inm2 (the most naive choice) and it seems to approach the
expected result (the point atm = 0) very well for all the loop orders. The numerical values are
given in Table 1. Both of the mentioned checks are well satisfied also for the other lattice extents
that we have employed so far.

Loop Result from a fit tom= 0 Direct measurement atm= 0

1 -2.6594(17) -2.6580(8)

2 -1.9166(63) -1.9095(30)

3 -6.304(37) -6.307(21)

4 -28.43(27) -28.68(15)

Table 1: Comparison of the zero-mass extrapolations with the known results [7] (lattice extent= 7).

As for the 4-loop order, Fig. 6 shows the behavior with respect to the lattice size at fixed mass:
the result seems to stabilise towards the infinite-volume value in the way one would expect. Once
a few more lattice sizes are available and similar extrapolations can be carried out for all masses,
we will finally be in a position to carry out the mass extrapolation that is our ultimate goal.
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Figure 1: The 1-loop trace of the plaquette vs.
mass (forL = 5): the numerical results (blue
dots) agree with the analytical red curve.
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Figure 2: The 1-loop trace of the plaquette vs.
mass (forL = 7): the fitted curve in red ap-
proaches the expected value atm= 0.
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Figure 3: The 2-loop trace of the plaquette (for
L = 7), together with a polynomial fit inm2.
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Figure 4: The 3-loop trace of the plaquette (for
L = 7), together with a polynomial fit inm2.

5. Conclusions and prospects

It is worth stressing once again that our approach has successfully passed the reliability checks
we adopted: known zero-mass limits are reproduced through an extrapolation, and the volume
dependence at a fixed mass appears to disappear once the dimensionless combinationmL, wherem
is the mass andL the lattice extent, is large enough.

In order to obtain the asymptotic large-volume value at a fixed mass, it is still necessary to
collect more statistics on bigger lattices (for example,L = 12 and 14) at least for the two or three
smallest masses. Then, the fitting function should be a combination of a negative exponential and
polynomials inmL, as explained for instance in Ref. [12].

After subtracting the logarithmic divergence from the fitted infinite-volume values, the sub-
sequent extrapolation to zero mass does not appear to be troublesome, given that tests with lower
loop orders have produced good results so far.
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Figure 5: The 4-loop trace of the plaquette (for
L = 7), together with a polynomial fit inm2.
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Figure 6: The 4-loop trace of the plaquette vs.
lattice size, for a fixed massm= 0.2.
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