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The QCD free energy can be studied by dimensional reduati@nthree-dimensional (3d) ef-
fective theory, whereby non-perturbative lattice simiolag become less demanding. To connect
to the original QCD a perturbative matching computationeiguired, which is conventionally
carried out in dimensional regularization. Therefore tHéadtice results need to be converted to
this regularization scheme as well. The conversion musabed up to 4-loop order, where the
free energy displays an infrared (IR) singularity. We tlere need a regulator which can be im-
plemented both on the lattice and in the continuum comprtatiVe introduce a mass regulator
to perform Numerical Stochastic Perturbation Theory cotafions. Covariant gauge is fixed in
the Faddeev-Popov scheme without introducing any ghodsfiel
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1. Introduction

As is well known, finite-temperature QCD seems to show twiedkht phases: it is confining
at low temperatures (the realm of mesons and baryons) whjlmtotic freedom and a quark-
gluon plasma are expected to appear in the high-tempenatgirae. A good observable to witness
the change is the QCD free energy density, given essenlipltiie familiar Stefan-Boltzmann law
of blackbody radiation, multiplied by the number of lighfesftive degrees of freedom.

To study the free energy density requires different metliodsfferent regimes. At low tem-
peratures the problem has to be treated with numericatdasimulations, while at high tempera-
tures perturbation theory should allow at least for somgmass, given that the coupling constant
g is small. Nevertheless, even for smglicertain coefficients in the weak-coupling expansion do
remain non-perturbative [1], and can only be determinet witmerical techniques.

In the high-temperature regime, the theory contains thifereht momentum scales [2],
namely T (hard modes)gT (soft modes) andfT (ultrasoft modes). The contribution of each
of these modes is best isolated in an effective theory sdthjs. is accomplished vidimensional
reduction[2, 3, 4] by integrating out the hard and soft modes to obtd@dd pure Yang-Mills SU(3)
theory (“MQCD”). MQCD can then be analysed on the lattice #reresults can be added to the
various perturbative contributions to obtain the compéatswer.

To add the MQCD lattice results to the perturbative ones, aedrto change regularization
scheme from lattice to dimensional regularization. To #imm, a matching between lattice and
continuum computations is needed and this is achieved bysnefaLattice Perturbation Theory
applied to MQCD. The strategy we adopt for this purpose hethd one oNumerical Stochastic
Perturbation TheorfNSPT) developed in recent years by the Parma group.

2. The NSPT method

NSPT relies orStochastic Quantizatiofb] which is characterized by the introduction of an
extra coordinate, a stochastic timeaogether with an evolution equation called the Langevimeeq

tion,

Jdo(xt)  dS¢)
Fra 20 +n(xt), (2.1)

wheren (x,t) is a Gaussian noise which effectively generates the quafiactnations of the theory.
The average over this noise is such that, together with tpeoppate limit int, the desired
Feynman-Gibbs functional integration is reproduced:

t—oo 17

(Olgn (x.)]), — > [DO[e(x)]e e (2.2)
For SU(3) Yang-Mills theory, the Langevin equation becomes
34Uy =i (0SUg)+ 1)Uy, 2.3)

guaranteeing the proper evolution of variables within traug.
In this framework, perturbation theory comes into play byameof the expansion [6]

Up (x,t) — ZQ('SUSK) (xt), (2.4)
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whereqp is the bare gauge coupling. This results in a system of cdupdgiations that can be
numerically solved via a discretization of the stochastitett = n7, wherer is a time step. In
practice, we let the system evolve according to the Langegimtion for different values af,
average over each thermalized signal (this is the meanitigeabove-mentioned limit— o), and
then extrapolate in order to get tle= 0 value of the desired observable. This procedure is then
repeated for different values of the various parametersamy in the action.

3. Massasan IR regulator

As stated above, the quantity we are interested in is theaibatibn to the QCD free energy
density f coming from the 3d pure SU(3) theory. On the lattice, thiseotable is related to the
trace of the plaquettél — Mp), wherelp = Ny Re TrP andP is the elementary plaquette, via

228 9 [ f
1-Mp) = | = 1
with bare lattice coupling = 2N./ (a“—dg%). The outcome can be expanded in powerSgds
C1 Co C3 64 _5
1-Np)=——+—=+—=+—=7+0(5,>) . (3.2)
"B BB B

The determinations of the first three coefficients in the gmesetting have been discussed in
Ref. [7]. The non-perturbative value of the whole quantis lbeen determined with lattice si-
mulations in Ref. [8]. Terms oO(BO‘E’) disappear in the continuum limit, thanks to the super-
renormalizability of the theory. Thus only the fourth ordeefficient is missing at the moment.

As shown parametrically in Ref. [1] and explicitly in Ref8][the coefficient, is actually IR
divergent, and consequently an appropriate regulator brusitroduced for its determination. In
a non-perturbative setting this is provided by confinemeile in fixed-order computations one
could employ a finite volume (as in Ref. [7]) or a mass. Sineeube of a mass is more convenient
in continuum computations involving dimensional reguation, we need to implement it in lattice
perturbation theory as well.

Apart from introducing a mass, we also fix the gauge in ordem&tch the setting of the
continuum computations. Consequently, the function&grsl is given by

z= / [Dy) Det(—%f?,bf)u[rp] +mz) exp(— Sy —Se) = / [Dg] exp(—Sy— Ser — Se) , (3.3)

where we assume the use of lattice units @e: 1), and

Su=Fo3 (1-Te) + i"f WZﬁ(x)wﬁ(x) : (3.4)

S = anea 32 000] 35)

Se = —Tr[in(= 3 0Byle) +m?)] (3.6)
7]
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where we have followed the conventions of Ref. [10], writingparticularU, = exp(iq), @, =

@, TA, with the normalization TTAT®] = 5*8/2. Moreoverm is the common gluon and ghost

massa is the gauge parameter, abg is the discrete Faddeev-Popov operator, given by [10]

Bl = 1410, - Loz - Lot L 48 0@8)|or1in 3.7)
H 2 M 127H 720H 30240 H L R

with @, = ¢F#, where[FA|gc = —ifAEC are the generators of the adjoint representation,

To treat the Faddeev-Popov determinant as a part of thenaateans that, because of the
Langevin equation, one has to face the quanfitg, = —OTr[InB] = — Tr[OBB~1] with B[g] =
—Su éblﬁu[q)] +m?. We perform the inversion as in Ref. [11], while the trace égsnputed by
means of sources in the usual way.

The global strategy is then to perform simulations withidat of different sizes at fixed mass
in order to extrapolate to infinite volume and, afterwardsgpeat this procedure for other values
of the mass. At this point, after subtracting the expectgardithmic divergence, one extrapolates
to zero mass, obtaining the needed fourth order coefficieist.crucial to take the infinite-volume
limit before the zero-mass one because, by performing thi¢slin the opposite order, the final IR
regulator would be the volume and not the mass as we want.

4. First (benchmark) results

So far, the statistics we took are not sufficient to carry batibfinite-volume and zero-mass
limits for the fourth order coefficients; but it is already possible to crosscheck the reliability of
the general method. As a first test, we compare the 1-loop ncaheesults for the trace of the
plaquette for the various masses with the known analytigesl As shown in Fig. 1 for a lattice
extentL = 5, the agreement between the numerical values and the iamalyte is very good.

A second check could consist of extrapolating at fixed latéigtent to zero mass, to see if one
recovers the already known coefficients [7]. Figs. 2 — 5 slimse extrapolations for a lattice extent
L = 7: the fitting curve is a polynomial in? (the most naive choice) and it seems to approach the
expected result (the point at = 0) very well for all the loop orders. The numerical values are
given in Table 1. Both of the mentioned checks are well satisfilso for the other lattice extents
that we have employed so far.

Loop | Result from a fit tan= 0 | Direct measurement at=0
1 -2.6594(17) -2.6580(8)
2 -1.9166(63) -1.9095(30)
3 -6.304(37) -6.307(21)
4 -28.43(27) -28.68(15)

Table 1: Comparison of the zero-mass extrapolations with the kn@sults [7] (lattice extent 7).

As for the 4-loop order, Fig. 6 shows the behavior with respethe lattice size at fixed mass:
the result seems to stabilise towards the infinite-volumeevin the way one would expect. Once
a few more lattice sizes are available and similar extrdjpoia can be carried out for all masses,
we will finally be in a position to carry out the mass extragiola that is our ultimate goal.

189/4



Four-loop plaquette in 3d with a mass regulator Christian Torrero

|
=
©

|
N
T

First loop of the trace of the plaquette
| |
N N
» N
T
N\
N\
Trace of the plaquette — First loop
1
N
w

|
N
o
\
)
R
|
N
o
\

Mass Mass

Figure 1: The 1-loop trace of the plaquette vs. Figure 2: The 1-loop trace of the plaquette vs.
mass (forL = 5): the numerical results (blue mass (forL = 7): the fitted curve in red ap-
dots) agree with the analytical red curve. proaches the expected valuenat 0.
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Figure 3: The 2-loop trace of the plaquette (for
L = 7), together with a polynomial fit im?.

Figure 4: The 3-loop trace of the plaquette (for
L = 7), together with a polynomial it in?.

5. Conclusions and prospects

It is worth stressing once again that our approach has ssfodlggpassed the reliability checks
we adopted: known zero-mass limits are reproduced thromgbxrapolation, and the volume
dependence at a fixed mass appears to disappear once theidimess combinatiomL, wherem
is the mass ant the lattice extent, is large enough.

In order to obtain the asymptotic large-volume value at affiness, it is still necessary to
collect more statistics on bigger lattices (for examples 12 and 14) at least for the two or three
smallest masses. Then, the fitting function should be a auatibn of a negative exponential and
polynomials inmL, as explained for instance in Ref. [12].

After subtracting the logarithmic divergence from the ftiafinite-volume values, the sub-
sequent extrapolation to zero mass does not appear to d@etsome, given that tests with lower
loop orders have produced good results so far.
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Figure5: The 4-loop trace of the plaquette (for
L = 7), together with a polynomial fit in?.

Figure 6: The 4-loop trace of the plaquette vs.
lattice size, for a fixed masa=0.2.
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