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1. Introduction

The pion, being the "simplest’ particle in the hadronic spectrum has been studied intensively
on the lattice. Especially the electro-magnetic form factor has received quite some attention. The
pioneering work was done by Martinelli and Sachrajda [1], followed by a more detailed study of
Draper et al. [2]. More recently, these calculations were extended to improved actions [3, 4], and
the inclusion of dynamical quarks (see e.g. [5]).

Present and planned experiments at SPS, RHIC, LHC and FAIR attempt to create and explore
QCD close to or in its deconfined regime. In this context, it is interesting to know whether and how
the charge distribution of hadronic states is subject to changes within such a medium. To investigate
this, we have extended the above mentioned results, and calculated the electro-magnetic interaction
of a photon and a pion at finite temperature below as well as above the anticipated phasetransition
of QCD, for the first time using lattice QCD.

2. Themethod

In our calculations we make use of non-perturbatively improved, quenched Wilson fermions on
a 243 x 32 lattice (T ~ 0), and on 323 x 8, 6, and 4 lattices (T ~ 0.93, 1.23 and 1.86 T.). The gauge
coupling, B = 6.0, corresponds to a lattice spacing a = 0.105 fm. We generated ¢'(100) — &'(200)
configurations. We calculated correlation functions for five different quark masses below T; and
two, including mgq = 0, above T¢. Details of our methods, including analysis techniques, can be
found in [3]. Here, we will only focus on the results and the details of the finite temperature
calculations.

In contrast to the T = 0 case, for which we can write the pion-photon matrix element as

T=0

ri = = () vl (1)) = (pr + ) F(QP), (21)
the parametrisation of the matrix element is more involved at finite temperature due to the intro-
duction of a heat bath. Here, the matrix element now involves three form factors and they might
dependent on more scalar variables

rll = (pf + pi)ll F(Q27 pfza plz) + qll G(Qza pfza plz) + nll H (Q27 pfza p|2) ) (22)

where n is four velocity of the aforemmentioned heat bath. Since the temperature is defined
through the inverse of the temporal extension, higher temperatures are reached for smaller N;. This
means that the two- and three-point functions cannot be measured for large t, as one usually does.
The correlation functions are thus contaminated with excited states to such an extent that a reliable
extraction of the form factor becomes impossible. We therefore turn to spatial correlation functions.

The above mentioned decomposition then changes slightly and the dependence on the scalar
variables becomes

My = (Pr+ P F(Q%, s, @hi) + Gy G(QP, th, Ghi) + N H(QP, g, whj) - (2.3)

with whj and wn ¢ the Matsubara frequencies of the initial and final states. Please note that due to
spherical symmetry of the self-energy, a dependence on the perpendicular momenta (p | = (px, py))
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Figure 1: The form factor at T = 0 for different m,, compared to experiment [6, 7]. The curves are VMD
fits.

is not allowed. Using current conservation (g, ; = 0), we can remove one form factor. Imposing
the extra kinematical restrictions
Wnf=whj=0 (2.4)

and choosing u = 3, we are left with a parametrisation of the matrix element which only contains
F as in the zero temperature case. In the following, we will therefore call F the form factor.

A point of care concerns the renormalisation of the (improved) current. Although the improve-
ment and renormalisation constants should be independent of the temperature, the latter of them
can, however, depend on the correlation direction.

3. Results

31 T=0

As a byproduct of the calculation of the two-point function, we obtain pion masses for the 5
different k-values. They agree with the literature. We also checked the energy-momentum relation
and up to the energies involved we found that a continuum relation provides the best description.

Using different currents, we extract the form factor for the five k-values at T = 0. Comparison
of the results for the Noether current and the improved current shows that the effect of improvement
can be as large as 25% for the highest momentum transfers considered. The improved results
are shown in Figfl. The high accuracy of the data point at Q? = 0 is due to the fact that the
Ward-Takahashi identity related to current conservation is satisfied to 1 ppm. From the figure, we
observe that our results approach the experimental data when the quark mass is lowered. Although
our lightest pion is still more than twice as heavy as the physical pion, we come rather close to the
measurements. As in the previous study [2] of the pion form factor we have compared our results

to a VMD inspired monopole form
1
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Figure 2: The renormalisation constant Zy for different temperatures and different pion momenta. Zy
increases slightly with p .

Fitting our data to this model, we extract a vector meson mass, my, which is within 5% of the
corresponding rho mass on the lattice [8]. For completeness, we have also fitted the experimental
values (solid line). From the model we can also extract estimates for the pion radius according to

o _ gOF|  _ 6
) = 6552 T 3.2)

which are shown in Fig. f|. For more details, please see [3].

32 T+#0

The screening masses we extract from the two-point function at T = 0.93 T, are equal to the
masses at T = 0. Again, the data for finite momentum is best described by the continuum dispersion
relation. The pion masses at 1.86 T are independent of the quark mass and amount to 0.85 x 2¢;.
At the intermediate temperature, the pion screening mass lies between the zero temperature results
and 2a. Results for mq = 0 at this temperature were not reliable.

The renormalisation constants mentioned at the end of the last paragraph are determined as fol-
lows. First, we have established that the conserved current, which needs no renormalisation, gives
F(0) = 0. This is done using a second current insertion to ensure that no current is leaking away in
the opposite direction. The renormalisation of the (improved) local current is then computed from

2y = Z9(1+by mg) = G$"(0, pr, pi) /G5*(0, pr, pi) (33)

The influence of the correlation direction can be considerable, as can be seen from Fig. | Apart
from the renormalisation constants, we continue to use the improvement constant cy as determined
in [9].

The form factor at 0.93T¢ is equal to the zero temperature data. However a slight dependence
on the pion momenta has been observed. This is most probably a statistical fluctuation. We com-
bine the lower momenta data in order to facilitate the VMD fit. The data for all temperatures are
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Figure 3: Form factor for different temperatures and a k-value corresponding to m (T = 0) = 540 MeV.

summarised in Fig. B The dependence on the transverse pion momenta is not observed for tem-
peratures above T.. As for the zero temperature case, the form factor data, below as well as above
Te, can be described by the VMD inspired monopole form with my, acting as a free parameter up to
moderate Q. From a fit to this model we extract the radii, shown in Fig. f]. Here, the definition of
the radius is adjusted according to using spatial correlators.

4. Discussion

We have presented the results of a study on the temperature dependence of the electromagnetic
interaction of the pion and the photon. The results were obtained using improvement techniques,
rendering the simulation free of order a effects. For T = 0, the form factor was shown to come
close to the experimental values, and a pion radius was found within 10% of the measured value.
A further lowering of the quark mass is most likely not the route to follow, indeed, other groups
have performed unquenched simulations [5], whose results also show agreement with experiment.

In the second part, we have presented the first finite temperature calculation of the form factor
corresponding to F at T = 0, using lattice QCD. It was found that up to a temperature close to T,
the situation is basically unchanged. We found a small dependence on the transverse pion momenta.
This is not allowed and most probably due to low statistics. The effect vanishes for temperatures
above the critical one. The data above T; is much less ’steep’ than at zero temperature, indicating
a more point-like behaviour, or equivalently, a smaller radius. This might be due to the fact that
we are forced to use spatial correlators. It is known that the spatial string tension above T¢ is rising
with temperature [10]. This could explain why our *spatial’ radii decrease with temperature, where
one would expect the opposite for real pion radii.
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Figure 4: Pion radius for different temperatures and pion momenta. For T = 0.93 T, the higher values
represent the lower momenta.
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