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1. Introduction

The equation of state (EOS) of the gluon plasma is ratherigaycknown from numerical
studies in lattice gauge theory [1], and there exist exotlghenomenological fits to the EOS
of the gluon plasma in the deconfined phase [2]. In contrast this practical success, it was
discovered by Linde [3] as far back as 1980 that finite-teiapee perturbative QCD suffers at a
fundamental level from infrared divergences, which sugggtsat finite-temperature perturbation
theory neglects an essential feature of QCD. It has beeropeap[4] to control these divergences
by introducing a magnetic mass~ g°T. It has also been proposed [5] that the divergences stem
from an inadequate application of the principle of gaugevadgence. Indeed in 1978, two years
before Linde’s discovery of the infrared divergence [3]ilBv showed that infrared modes are
strongly suppressed when gauge equivalence is imposed abihperturbative level [6].

Two or more different configurations may be gauge equivadsen though both satisfy the
linear Coulomb gauge conditionﬁzlaiA; = 0. When enumerating physical states, only one of
these “Gribov" or gauge copies should be counted, so theesgfaahysical states ieduced to the
fundamental modular region (FMR), a region that is free ab@r copies. Gribov [6] found that
the dispersion relatiok (k) = k gets modified because of the reduction of the physical spetees

and he obtained instead
|\/|4
E(k):\/kz+ﬁ, (1.2)

wherek = |k|, andM is a QCD mass scale. The reduction of the physical state sgeriginally
proposed as an essential feature of the confinement merhf$)ig]. However statistical mechan-
ics is primarily a matter of counting states, and the reductif the physical state space required
by the gauge principle influences the EOS at all temperatltese we shall be concerned with its
effect in the deconfined phase.

It is known from numerical studies [1] that at high temperatthe EOS of the gluon plasma
approaches the Stefan-Boltzmann law; 3p = 3cT#, whereg is the energy per unit volume,
is the pressurel is the temperature, angg = %(N2 —1) in SU(N) gauge theory. Thus it seems
reasonable to describe the gluon plasma at high tempeiatfirst approximation as a gas of non-
interacting quasi-particles. We shall describe the gpasicles by the Gribov dispersion relation
(1.1) or a similar one, foE (k) is only approximately known. Fortunately the results aiedihold
under rather general conditions &tk). We call the gas of non-interacting quasi-particles, with
modified dispersion relation, the FMR gas.

Many aspects of the Gribov scenario have been verified imtaogestigations. Infrared
suppression of the gluon propagator in Coulomb gauge hasdieserved in numerical simulation
[8], but less strongly in [9], and in Landau gauge in 3-dimens [10]. It has also been found in
variational calculations in Coulomb gauge [11], and in Siclger-Dyson calculations in Coulomb
[12] and in Landau [13] gauge. A long-range color-Coulomiteptial was found in numerical
simulations in Coulomb gauge in the deconfined phase [14]jsireported in the talk by Stefan
Olejnik at this conference.

The questions we wish to address here are: (i) What is theliequa state of the FMR gas?
(i) How does it compare with the EOS that is known from num@ristudies? (More details are
provided in [15].)
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2. EOSof the FMR gas

In the Stefan-Boltzmann limit, the degrees of freedom farthegluon momentunk are the
two states of polarization, each with color multipliciti? — 1). These are precisely the degrees
of freedom in Coulomb gauge, and we shall use this gauge focaaulation. It is a “physical”
gauge without negative metric states, and all constrairgssatisfied identically. Although the
Coulomb gauge is not manifestly Lorentz covariant, thisdsmecessarily a disadvantage in the
deconfined phase because at firlitehe heat bath provides a preferred Lorentz frame, and the
manifest symmetries of the Coulomb gauge are the symmetribe physical problem at hand.

The partition function of the FMR gas is given by the Planc&tritbution, Z =[], [ 1 —
exp(—BEn) |71, where = 1/T is the inverse temperature, ame- (k, A, a), wherek is 3-momentum,

A = 1,2 is polarization, ané = 1,...(N? — 1) is color. For the energy density,= —\%"(',LBZ one

obtains ( ) ) @
Nc—-1) [*
= dk ———— E(k 2.1
T /o expBE( =1 E 1 2.1)
and for the pressurgg=TZ = T |nZ,

v
(N2—-1) [« k3 0E(K)
3 /o dk expBE(K)]—1 ok ’ (2.2)

p =
and for the trace anomaly= € — 3p,

(N2—1) = k* 0 /—E(K)
0="% /odkexp[BE(k)]—la_k( k ) (2:3)

We also havee = Tz%(fp), from which it follows that the trace anomaly may be writt@r=
e—3p= T5% (T—ﬂ). Upon integration this yields

p=cegT*— T4 / dT' T-56(T"). (2.4)
T

3. FMR gasat high temperature

Suppose that the leading deviationkgyfk) from k at highk is expressed by a power law,
E(k)/k=1+c/k'+... . (3.1)

For the Gribov dispersion relatida(k) = \/k2+ M4/kZ one hasy = 4, whereas for a gluon mass,
E(k) = vk?+ n?, one hay = 2. The gluon condensate has dimension 4, which leads on@ézex
y =4, whereas if there were a condensate of dimension 2, onaleapkecty = 2. The asymptotic
behavior of the EOS is qualitatively different fgigreater or less than 3. We suppgse 3, and
consequently the deviation from the ultraviolet beha¥gk) = k is soft.

Fory > 3, the asymptotic higA- limit of the trace anomaly is obtained from the substitution
exp[@] -1— @ in (2.3). This substitution cannot be made in the integaigpfande because
they would diverge. It gives a linear asymptotic trace anlgma

6=LT-+0(1), (3.2)
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where

_ o —2 2
- /0 dkk In[E (K) /K, (3.3)

is an integral that converges fgr> 3 (as we have supposed), and is positiveHgk) > k. These
are sufficient conditions for the linear asymptotic form2j3with L > 0. AlthoughL describes the
high-T limit of the FMR gas, the last integral involves all momehtaFor the special case of the
Gribov dispersion relation (1.1), one obtains= (N? — 1) (1y/2)~* M3, which is proportional to
M3 although onlyM* appears in the dispersion relation.

The pressure at high is obtained from (2.4) which yields

p=cs T*—(1/3)L T +0O(1), (3.4)

Thus for the FMR gas, the leading deviation of the presswm fthe Stefan-Boltzmann law is
linear inT. However this linear term — and only a linear term — is anaittl in the formula for
the energy density = TZ%(TP), which gives

£=3cg T*+0O(1). (3.5)

An EQOS of this type was obtained as a fit to the lattice data6i. [1

4. Comparison with numerical EOS

The EOS of the FMR gas at high is not sensitive to the exact form &f(k) because (3.4)
and (3.5) hold as long as> 3 andE(k) > k. To compare with the numerical data, we take the
Gribov dispersion relation (1.1). The unknown mass shhis determined by fitting the anomaly
0 =¢—3pat highT, because the corrections to this quantity are expected swiadl. [Indeed,
taking thermal perturbation theory as a guide [17], we nb#g the leading correction tp is
of orderAp ~ g?(T)T* ~ % The anomaly is given b = T°£ (&), so the corresponding
correction to the anomalpe = T4 (29), is of orderTS & () = % ~g}(T)T]

The numerical data of [1] foq% are represented by the black interpolating curves in Filgft).(
(More recent studies include dynamical fermions or a chehgotential that cannot be described
by the FMR gas.) The data fdd; = 6 and 8 agree, and were interpreted as continuum values [1].
The red dots are obtained from the analytic formula (2.3jhwiass scale set 8 = 2.6T. by
fitting at highT, whereT. is the transition temperature. The relatively large défere in the tran-
sition region between the FMR gas and the numerical datd foe — 3p occurs because the FMR
gas does not exhibit a sharp phase transition, whereas fer§iu(3) gauge theory there is a first
order phase change, sds discontinuous whilg is continuous. We do not attempt to estimate the
error of M because perturbative-type corrections to the FMR gas hewe beglected. From the
valueT; = 0.625,/0 of [1], whereao is the string tension, one gd#s = 1.6,/0, or M = 705 MeV,
where the string tension for the quarkless theory is defindmt/c = 440 MeV.

The numerical data of [1] fos;, 35 and s 3P are are displayed as black interpolating curves in

aT?
Fig. 1 (right), WhereT— £+p. The horlzontal Ilne represents the Stefan-Boltzmann E@S&the
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Figure1: Numerical and analytic plots ¢ — 3p)/T# (left), and ofe/T#, 3/4s/T2, 3p/T* (right).

FMR gas,% and% approach the Stefan-Boltzmann limit Iilgig and% respectively, being quite
close to it at the highest temperature displaykeed; 5T;, whereas the gluon plasma approaches the
Stefan-Boltzmann limit more slowly. The difference betwdke FMR gas and the gluon plasma
in the range Z; to 5T; appears attributable to perturbative-type correctionmodlerate size. In
standard thermal perturbation theory [17] these are ofingadrderg?(T) ~ ﬁ but diverge at

orderg®, whereas corrections to the FMR gas are expected to be ableul

5. Discussion

Above the transition region, the EOS of the FMR gas gives agiescription of the most
prominent feature of the gluon plasma which is the rapid dvbfhe pressure compared to the
energy from the Stefan-Boltzmann value,Tadecreases from infinity. The linear asymptotic trace
anomaly (3.2) provides a ready explanation for this, thads$éor any quasi-particle model with
y>3 andaik % < 0, although other fits are certainly not excluded. The FMRiga®t exact
even at high temperature because of perturbative-typeadmns. We expect however that they
are calculable and of moderate size above the transitioarreg

The transition region is not so well described by the FMR gdere is no sharp phase tran-
sition because(T) is an analytic function. Moreover the dependence on N [ofNjUis only
through the coefficientfN? — 1), whereas even the order of the phase change deperdshming
second order for SU(2) and first order for SU(3). An analy$ihe phase transition based on cen-
ter symmetry is given in [18]. However the dispersion relat (k) = y/k2+ “lf—; has a minimum
energyEmin = v/2M, so the thermodynamic functioss p ands of the FMR gas are exponentially

small forT < v/2M = 997 MeV (forM = 705 MeV). The mass of the lightest glueball is of order
1 GeV, so the thermodynamic functions of the FMR gas are exptadly small where they are
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supposed to be. Altogether the FMR gas, with a single paerietwvhich is the mass scale, is
competitive with cut-off phenomenological models [19].

The improved phenomenological models of [2] are more peeitian the FMR gas especially
in the transition region, but they also require several patars, whereas we have fit only the QCD
mass scal®!. However the FMR gas is not intended to be a precise phendogoal model, but
rather to provide a useful starting point, well founded ia gninciples of gauge theory, that allows
calculable, moderate size corrections at highAthough it is defined by Gribov’s dispersion rela-
tion of 1978, the FMR gas has two important properties thakueter independently reinvented:
(i) Its EOS closely resembles simple phenomenological tsaofehe gluon plasma [19]. (i) The
effective masé"ii—2 controls infrared divergences in higher order correctemg is not necessary to
introduce the magnetic mass~ g°T [4] for this purpose.
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