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1. Introduction

Lattice QCD has widely been used to get information about the properties of matter at high
temperature and vanishing net baryon density µb [1]. These studies have been extended to non-
vanishing baryon density. I.e., the equation of state has been discussed using Taylor expansion [2],
reweighting [3] or imaginary chemical potential techniques [4].

Furthermore the free energy of static quark anti-quark sources at µb = 0 received much atten-
tion [5]. We will now apply here the Taylor expansion approach in order to extend the results on
this free energy to non-zero quark chemical potential. A first attempt to do this was discussed in
[6]. Furthermore we will analyze the large distance behaviour of the free energy and determine the
corresponding expansion coefficients of the screening mass, which can be compared to perturbative
predictions.

We will restrict the discussion of the expansion up to the 2nd order in µb here. Results up to
the 6th order as well as furhter details on the simlulation and the Taylor expansion technique can
be found in [7].

2. Taylor expansion method in QCD at finite density

The staggered fermion partition function

Zµ =

∫

DU ∆(µ) e−S , (2.1)

where in our 2-flavour case ∆(µ) is the square root of the fermion determinant, can be Taylor
expanded in powers of the quark chemical potential µ = µb/3 by inserting the expansion of ∆(µ)

in powers of µ .

∆(µ) = ∆(0)
(

1+D1µ +D2µ2 + · · ·
)

. (2.2)

The odd orders in the expansion of Zµ are vanishing because Dn is imaginary for odd and real for
even n. The simulation can be done at µ = 0, where the Dn are handled like observable quantities.

This procedure can be extended easily to the µ-dependent expectation value of an observable
A that does not directly depend on µ ,

〈A 〉µ =
1

Zµ

∫

DU A ∆(µ) e−S =
〈A ·1〉0 + 〈A D1〉0 µ + · · ·+ 〈A D6〉0 µ6

1+ 〈D2〉0 µ2 + 〈D4〉0 µ4 + 〈D6〉0 µ6 +O(µ7) ,

= 〈A 〉0

(

1+a1µ +a2µ2 + · · ·+a6µ6)+O(µ7) . (2.3)

We apply this scheme to the Polyakov loop correlation functions discussed in the next section.

3. Heavy quark free energies

A heavy (static) quark Q at site x is represented by the Polyakov loop,

L(x) =
Nτ

∏
x4=1

U4(x,x4) , (3.1)
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Figure 1: The 0th order coefficients f 1
QQ̄,0 and f av

QQ̄,0
for the singlet (a) and colour averaged (b) free energies.

f 1
QQ̄,0 is matched to the T = 0 heavy quark potential at small distances (a).

which is an SU(3) matrix. A heavy anti-quark Q̄ is described by the corresponding hermitian
conjugate matrix. The colour averaged and singlet QQ̄-free energies Fav

QQ̄
(r,T,µ) and F1

QQ̄
(r,T,µ)

can be calculated from the corresponding correlation functions O av,1(r),

Fav,1
QQ̄

(r,T,µ) = −T ln
〈

O
av,1(r)

〉

= f av,1
QQ̄,0

(r,T )+ f av,1
QQ̄,2

(r,T )
(µ

T

)2
+O

(

(µ
T

)4
)

, (3.2)

where

O
av(r) =

1
N

1
N2

c
∑
x,y

TrL(x)TrL†(y) ,

O
1(r) =

1
N

1
Nc

∑
x,y

TrL(x)L†(y) . (3.3)

In Fig. 1 and 2 we show the results for the 0th and 2nd order expansion coefficients in µ/T for
temperatures above and below Tc. Because f av,1

QQ̄,2
(r,T ) is always negative, we find that for small µ

the free energy of a static quark anti-quark pair decreases in a medium with a net excess of quarks
or anti-quarks.

We determine the large distance value of these coefficients, shown in Fig. 3, by taking the
weighted average of the values at the five largest distances. f av,1

QQ̄,2
(∞,T ) signs the transition tem-

perature by showing a pronounced peak at Tc. The coefficients of the colour averaged and singlet
free energy are identical at infinite distance.

4. Screening masses

For temperatures above Tc and large distances r the heavy quark free energies are expected to
be screened,

∆Fav,1
QQ̄

(r,T,µ) = Fav,1
QQ̄

(∞,T,µ)−Fav,1
QQ̄

(r,T,µ) ∼
1
rn e−mav,1(T,µ)r (4.1)
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Figure 2: The 2nd order coefficients of the singlet (a,c) and colour averaged (b,d) free energies below (a,b)
and above (c,d) Tc.

with n = 1,2 for the singlet and colour averaged free energies respectively. In the infinite distance
limit we thus get,

mav,1(T,µ) = − lim
r→∞

1
r

ln
(

∆Fav,1
QQ̄

(r,T,µ)
)

. (4.2)

Expanding the logarithm in powers of µ we see that only the even orders of the expansion coeffi-
cients for the screening mass are non-zero, i.e. the second order coefficient can be written as

mav,1
2 (T ) = − lim

r→∞

1
r

∆ f av,1
QQ̄,2

(r,T )

∆ f av,1
QQ̄,0

(r,T )
, (4.3)

where we write ∆ f av,1
QQ̄,n

for the expansion coefficients of ∆F av,1
QQ̄

. We use this expression to determine
the expansion coefficient of order 2 from the infinite distance limit. For the 0th order coefficient we
refer to fits of the form of eq. 4.1. In fact the rational expression under the limit in eq. 4.3 shows
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Figure 3: The coefficients for the singlet and colour averaged free energies at infinite distance rT versus
temperature.

only little r-dependence and we see a wide plateau starting close to rT = 0. We therefore determine
m1,av

2 (T ) by fitting the ratio in eq. 4.3 to a constant in the plateau range. The resulting coefficient,
shown in Fig. 4 (b) is always positive and leads to an enhancment of the screening mass for small
µb 6= 0. At high temperatures m1,av

2 (T ) is in remarkable agreement with the LO high temperature
perturbative prediction resulting from the µ-expansion of the Debye mass

mD(T,µ) = g(T )T

√

Nc

3
+

N f

6
+

N f

2π2

(µ
T

)2
, (4.4)

where we introduce an additional scale factor A via m1(T ) = A ·mD(T ), which is determined from
fitting m1

0(T ). We find A = 1.397(18). Finally we see, that m1
2(T ) and mav

2 (T ) differ by a factor
1/2, which is expected at high temperature for all the coefficients but has not been observed for the
0th order so far.

5. Conclusions

We analyzed the dependence of heavy quark free energies and screening on the baryon-
chemical potential. The free energies are decreasing to first order in µ 2, while the screening mass
is increasing. This suggests that the screening length in a baryon or anti-baryon rich quark gluon
plasma decreases with increasing value of the chemical potential, which is consistent with the ex-
pectation that a non-zero µ shifts the transition to lower temperatures. The screening behaviour
is in good agreement with perturbation theory for T/Tc>∼2. We observed that the µ-dependent
corrections of the colour averaged screening mass are twice as large as those of the colour singlet.
This suggests that the contribution to the µ-dependent corrections of the colour averaged screening
mass is due to two-gluon exchange.
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Figure 4: 0th and 2nd order expansion coefficients of the screening mass. The solid lines are connected to
the LO perturbation theory.
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