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We show that the Casimir scaling of string tensions observedin lattice simulations is naturally re-

lated to the smallness of the adjoint Polyakov loop in the confined phase. Particles in zero N-ality

representations of SU(N) can be used to modify simultaneously the adjoint Polyakov loop expec-

tation value, string tension ratios, and mixing between representations of the same N-ality. This

leads to a large class of effective Polyakov loop models, allconfining at low temperatures. One

limiting case is a Z(N) spin model, while another is closely related to the deconfining transition

in large-N models
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1. Introduction

There is now a substantial body of lattice simulation results indicating that Casimir scaling
[1] or behavior close to it occurs in the string tensions associated with different representations of
SU(N) gauge theories in 3+1 and 2+1 dimensions. Casimir scaling is exact in two dimensions,
but a firm foundation in higher dimensions is lacking. String theory providesa theoretical basis for
an alternative, sine-law scaling, but it has proven difficult to differentiate Casimir scaling and sine-
law scaling in simulations. We will show below that this universal, or near-universal, behavior,
can be spoiled by terms involving adjoint Polyakov loops added either to the gauge action or to
the effective action for Polyakov loops. In addition, such terms also induce large mixing between
representations in Polyakov loop two-point functions, and directly control the size of the adjoint
Polyakov loop.

The dominant effect on finite-temperature physics of adding heavy partcles in the adjoint rep-
resentation is well-known. In perturbation theory, the effect on the Polyakov loopP can be modeled
by adding a term

−hTrAP = −

[

M2T2

π2 K2(M/T)

]

TrAP (1.1)

to the gauge action withh> 0. Such terms favorP∈ Z(N), and thus spontaneous breaking ofZ(N)

symmetry. One might believe that only the caseh ≥ 0 is interesting. However, there are several
examples where terms arise in the effective action which favor aZ(N)-symmetric phase.

Perhaps the most interesting case is recent work by Diakonov et al. [2],who have calculated
the contribution to the effective potential of a new class of finite temperature instantons (calorons)
with a non-trivial Polyakov loop at spatial infinity. Their results indicate an instability in the decon-
fined phase at sufficiiently low temperatures. It is very interesting to compare this with related work
on N = 1 supersymmetric Yang-Mills theory onR3×S1 [3, 4]. String tensions can be calculated
exactly from instanton contributions to the effective potential, and show sine-law scaling.

Instability ofP= I also occurs in the one-loop effective potential for constant chromomagnetic
fields at finite temperature [5]. At low temperatures, the minimum of the real part of the effective
potential alternates between the confined and deconfined phases. However, the presence of an
imaginary contribution to the effective potential indicates that the Savvidy instability is present at
finite temperature.

Another example occurs for gauge theories in small spatial volumes. The integration over
global color symmetry leads to a term proportional to the log of Haar measure inthe effective
action in the form

∑
j<k

ln

[

sin2
(

θ j −θk

2

)]

= −
∞

∑
n=1

1
n

TrA
[

Pn +P+n] (1.2)

and this term is responsible for confinement. For all values ofN, there is a unique set of eigenvalues
where Haar measure peaks, corresponding to uniform spacing on the unit circle. For this set of
eigenvalues,TrRP = 0 for all representations with non-zero N-ality [6, 7]. For largeN, there is a
phase transition to a deconfining phase [8].

It is thus interesting to consider all values ofh. In lattice gauge theories, standard arguments
[9] tell us that a low-temperature confined phase will exist for allh, and there is no phase transition
at β = 0 ash is varied. The two limiting cases,h → ±∞, are particularly interesting. Ash is
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Figure 1: The expected value ofTrAP as a function ofh.

taken large and positive,P tends towards elements ofZ(N), P = zn with z= exp(2π i/N), giving
TrAP → N2−1. In this limit, the confined phase, withTrFP = 0, must be realized by averaging
over differentZ(N) values in a manner similar to the high-temperature phase of aZ(N) spin system.
We refer to this as theZ(N) limit. As h is taken large and negative,TrAP goes to its minimum value
of −1, which leads toTrFP= 0. We refer to this as the master-field limit, because there is a unique
set of eigenvalues ofP, evenly spaced on the unit circle, as occurs in the large-N limit.

2. 1+1 Dimensions

We consider the case of an external fieldh coupled to a(1+1)-dimensionalSU(2) gauge
theory. It is convenient to use the Hamiltonian formalism, exchanging the rolesof x andt, so that
the width of the system is 1/T. The Hamiltonian can be written as

H = ε0C2−hχA (2.1)

whereC2 is the quadratic Casimir operator and the constantε0 = g2/2T will henceforth be set to
one. This model is easily studied on a finite-dimensional subspace of the Hilbert space of gauge-
invariant states, which is spanned by the group characters. The energy eigenvalues are related to
string tensions byE j = σ j/T. Figure 1 shows the expectation value〈TrAP〉 as a function ofh.
Consistent with our general analysis above,〈TrAP〉 asymptotically approches 3 ash → +∞, and
approaches−1 ash → −∞. A special feature of 1+ 1 dimensions is that〈TrAP〉 is exactly zero
whenh = 0; in higher dimensions,〈TrAP〉 is very small but positive in the confined phase.

We can define an effective ”mass” for each representationj in terms of connected correlation
functions as

M( j)
e f f (x) = −

d
dx

ln
[〈

χ j (0)χ j (x)
〉

c

]

. (2.2)
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Figure 2: The effective massMe f f as a function of scaled distance as measured by various Polyakov loop
correlation functions.

For large|h|, the behavior of the effective masses shows a rapid approach to the lightest string
tension in eachZ(2) sector. For small values ofh, we can see the persistence of Casimir scaling
over some distance, as shown in figure 2.

Although each correlation function
〈

χ j (0)χ j (t)
〉

c is dominated at large distances by the light-
est string tension in eachN-ality sector, the infinite set of string tensions which exist ath= 0 persist
for all h, and are obtained from the eigenvalues ofH by E j = σ j/T. For simplicity, we label the
eigenvalues by their association with a given representation ath = 0, i.e., by j. As seen in figure 3,
eigenvalues, and hence string tensions, vary smoothly withh.

The overall picture we have seen in 1+ 1 dimensions andN = 2 should carry over to higher
dimensions and largerN. In the limit of large positiveh, Polyakov loops become more and more
like Z(N) spins, and averaging over different values ofZ(N) is necessary for confinement. In the
opposite limit, a single field configuration gives confinement without the need for any averaging.

’

3. Higher Dimensions

We have studied the effects of adjoint potential terms in lattice Polyakov loop effective actions
using mean field theory, with results similar to those seen in 1+ 1 dimensions. We use the most
generalZ(N)-invariant form for the Polyakov loop effective action

Se f f = − ∑
jAkB

JjAkBχ jAχkB−∑
A j

hA jχ jA + .. (3.1)

where A and B label representations and j and k label sites. The couplings h jA can be non-zero
only for representations of zeroN-ality. The couplingsJjAkB are zero unlessA andB have total
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Figure 3: EigenvaluesE j = σ j/T of the Hamiltonian as a function ofh.

N-ality zero, and there may be additional terms involving three or more sites. Thedominant term
is known from lattice simulations to be a positive two-site nearest-neighbor coupling [10, 11]. In
the strong coupling limit, the coefficientsJjAkB can be calculated analytically; the couplingsh jA are
identically zero in that limit. The mean fields are given by

K jA = ∑
Bk

JjAkBMkB+h jA + .. (3.2)

and are determined self-consistently in terms ofM jB via

M jB =
〈

χ jB
〉

0 =

∫

(dUj)χ jB exp∑AK jAχ jA
∫

(dUj)exp∑AK jAχ jA
(3.3)

where the single-site integral is over the Polyakov loop variableU j . The Polyakov loop two-point
functions satisfy

∑
Bk

[

−JjAkB+δ jk
∂K jA

∂M jB

]

GkBlC = δ jl δAC. (3.4)

where possible extra terms have been suppressed.
It is straightforward to show that the phenomena observed in 1+1 dimensions as the adjoint

couplinghAd j is varied occur using mean field theory in higher dimensions as well. The adjoint
expectation value

〈

χAd j
〉

0, an indicator of gluon confinement, varies withh, taking its extremal
values whenh→±∞. The matrix∂K jA/∂M jB is similar to a mass term in continuum field theories.
It is the inverse of

∂M jB/∂K jA =
〈

χ jBχ jA
〉

0−
〈

χ jB
〉

0

〈

χ jA
〉

0 . (3.5)

From this, it is easy to show the smooth variation of string tension ratios ash is varied, and the
strong mixing of representations of the sameN-ality when |h| is large. Other features of two-
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dimensions, such as the rapid decrease to zero of the lightest string tensionash→ ∞, also occur in
mean field theory.

The small value of the renormalized adjoint Polyakov loop measured in lattice simulations is
consistent with all the mean field couplingsK jA being small. This would in turn imply that the
couplingsh are small as well. In the limiting case where allK’s and allh’s are zero, the matrix
∂K jA/∂M jB is one only whenA andB are conjugate representations, and zero otherwise. In this
limiting case, mixing can still occur via the two-site couplingJjAkB. Such a term has recently been
measured inSU(2) lattice simulations, but it is small [12].
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