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We study two-color lattice QCD with massless staggered fermions in the strong coupling limit
using a new and efficient cluster algorithm. We focus on the phase diagram of the model as a
function of temperature T and baryon chemical potential µ by working on Lt ×Ld lattices in both
d = 2,3. In d = 3 we find that at µ = 0 the ground state of the system breaks the global U(2)

symmetry present in the model to U(1), while the finite temperature phase transition (with Lt = 4)
which restores the symmetry is a weak first order transition. In d = 2 we find evidence for a novel
phase transition similar to the Berezinky-Kosterlitz-Thouless phenomena. On the other hand the
quantum (T = 0) phase transition to a symmetric phase as a function of µ is second order in both
d = 2,3 and belongs to the mean field universality class.
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1. INTRODUCTION

Two-color QCD has been extensively studied over the years both theoretically [1, 2, 3, 4] and
numerically [5, 6, 7, 8, 9, 10, 11, 12]. Although a lot of progress has been made in uncovering
important qualitative features of this theory, many interesting quantitative questions remain:

1. What is the order of the finite temperature chiral transition at zero and non-zero chemical
potentials?

2. Can the low energy physics at small T and µ be captured by chiral perturbation theory? An
answer to this question was attempted in [11].

3. What is the order of the phase transition that occurs when the lattice gets saturated with
baryons at T = 0?

4. What is the phase structure in two spatial dimensions since spontaneous symmetry breaking
is forbidden at finite temperatures.

The reason for the lack of quantitative progress can be traced to the fact that all previous studies
have been limited to small lattice sizes and relatively large quark masses; a problem which haunts
all numerical studies of strongly correlated fermionic systems.

In this work we try to make progress by considering the strong coupling limit. Although this
limit has the worst lattice artifacts, it contains some of the essential physics, namely confinement
and chiral symmetry breaking. On the other hand recent advances in Monte Carlo algorithms allow
us to study the chiral limit on large lattices with relative ease in the strong coupling limit [13]. In
this work we extend these algorithms and apply it to study strong coupling two-color QCD with
staggered fermions. This theory is especially interesting due to an enhanced U(2) symmetry at
zero quark mass and baryon chemical potential. It was originally considered in [14, 15] and was
recently reviewed in [16]. However, many of the questions raised above remain unanswered even
in this simplified limit.

2. THE MODEL

Our model lives on a d +1 dimensional hyper-cubic lattice with sites x ≡ (xt ;x1,x2, ..,xd). The
size of the lattice is taken to be Lt ×Ld and is periodic in all directions. The action of our model is

S = −∑
x,α

rαηα(x)

[

eµat δt,α χ(x)Uα(x)χ(x+ α̂)− e−µat δt,α χ(x+ α̂)U†
α(x)χ(x)

]

. (2.1)

The Grassmann fields χ(x) and χ(x) represent row and column vectors with 2 color components
associated to the lattice site x. The color component of the quark fields will be denoted as χa,a =

1,2. The gauge fields Uα(x) are elements of SU(2) group and live on the links between x and x+ α̂
where α = 1,2, ..,d for spatial links and α = t for temporal link. The factor rα = 1 for α = 1,2, ..,d
and rt = 1

at
with at being the asymmetry factor between spatial and temporal lattice spacing. This

asymmetry allows us to study finite temperature behavior [17].
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A discussion of the relevant symmetries of the action (2.1) can be found in [8, 16]. As ex-
plained in these references when µ = 0 our model has a U(2) global symmetry:

Xo →V Xo, Xe → XeV
†, V = exp(i~α ·~σ + iφ) ∈U(2). (2.2)

where X e and Xo are given by

Xe = (χe,−χ tr
e τ2), Xo =

(

χo

−τ2χ tr
o

)

(2.3)

and the subscripts e and o refer to even and odd sites. Note in our notation ~σ are Pauli matrices
that mix χ and χ tr present in Xo and X e while~τ are Pauli matrices that act on the color space. The
U(2) symmetry is reduced to UB(1)×Uχ(1) in the presence of a chemical potential:

UB(1) : Xo → exp(iσ3φ)Xo, Xe → Xe exp(−iσ3φ)

Uχ(1) : Xo → exp(iφ)Xo, Xe → Xe exp(−iφ).
(2.4)

Here UB(1) is the baryon number symmetry χ(x) → eiφ χ(x), χ(x) → χ(x)e−iφ and Uχ(1) is
the chiral symmetry of staggered fermions χ(x) → eiφε(x)χ(x), χ(x) → χ(x)eiφε(x) where ε(x) =

(−1)xt+x1+x2+...+xd .

3. DIMER-BARYONLOOP REPRESENTATION

One of the computational advantages of the strong coupling limit is that in this limit it is
possible to rewrite the partition function,

Z =
∫

[DU ][dχdχ]exp(−S), (3.1)

as a sum over configurations containing gauge invariant objects [18, 19, 20]. In our case these
objects turn out to be dimers and baryonloops. A lattice configuration K of dimers and baryonloops
is constructed as follows:

(a) Every link of the lattice connecting the site x with the neighboring site x+ α̂ contains either
a dimer kα(x) = 0,1,2 or a directed baryonic bond bα(x) = −1,0,1. bα(x) = 1 indicates the
direction is from x to x + α̂ and −1 implies it is from x + α̂ to x. kα(x) = 0 and bα(x) = 0
means that the link does not contain any dimer or baryonic bond. In our notation we also
allow α̂ to be negative. Thus, if α was positive, k−α(x) and b−α(x) will represent dimers
and baryonic bonds connecting x with x− α̂ .

(b) If a site is connected to a baryonic bond then it must have exactly one incoming baryonic
bond and one outgoing baryonic bond. Thus baryonic bonds always form self-avoiding bary-
onloops.

(c) Every lattice site x that does not contain a baryonic bond must satisfy the constraint

∑
α

kα(x) = 2

where the sum includes negative values of α .
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Figure 1: An example of a dimer-baryonloop configuration.

An example of a dimer-baryonloop configuration is shown in Figure 1. Note that sites connected
by kα(x) = 1 also form loops. Given the set {K} of such dimer-baryonloop configurations the
partition function of the theory described by eq.(2.1) can be rewritten as [15],

Z = ∑
{K}

{

∏
x

T [kt(x)+|bt(x)|] exp[2µatbt(x)]

}

(3.2)

where T = 1
a2

t
. Note that the partition function has been written as a statistical mechanics of dimers

and baryonloops with positive definite Boltzmann weights. It is possible to extend the Monte Carlo
algorithm developed in [13] and apply it to this problem. The details of the algorithm will be
published elsewhere.

4. OBSERVABLES

A variety of observables can be measured with our new algorithm. We will focus on the
following:

(a) The chiral two point function, given by

GC(z,z′) =

〈

χ(z)χ(z) χ(z′)χ(z′)

〉

(4.1)

and the chiral susceptibility,
χC ≡ 1

Ω ∑
z′

GC(z,z′) (4.2)

where Ω is the lattice space-time volume.
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(b) The diquark two point function, given by

GB(z,z′) =

〈

χ1(z)χ2(z) χ2(z
′)χ1(z

′)

〉

(4.3)

and the diquark susceptibility,
χB ≡ 1

Ω ∑
z′

GB(z,z′) (4.4)

(c) Baryon density, defined as

nB ≡ 1
2Ω

∂ lnZ
∂ µ

(4.5)

(d) The helicity modulus associated with the U(1) chiral symmetry, which we define as

YC ≡ 1
dΩs

∑
α=1,2,..,d

〈

(

∑
x

Aα(x)
)2
〉

(4.6)

where
Aα(x) = ε(x) [|bα(x)|+ kα(x)] (4.7)

and Ωs is the spatial lattice volume.

(e) The helicity modulus associated with the U(1) baryon number symmetry, which we define
as

YB ≡ 1
dΩs

∑
α=1,2,..,d

〈

(

∑
x

Bα(x)
)2
〉

(4.8)

where
Bα(x) = [bα(x)] (4.9)

Both YC and YB are diagonal observables and can be calculated configuration by configuration in the
dimer-baryonloop language and averaged. On the other hand GC(z,z′) and GB(z,z′) are examples
of off-diagonal observables and can be measured by exploiting the special properties of the directed
loop update [13].

5. EXPECTED PHASE DIAGRAM

At µ = 0, one expects a finite temperature phase transition separating the low temperature
(U(2) → U(1)) broken phase and the high temperature symmetric phase. Similarly, for small µ
there is a phase transition separating the low temperature phase where UB(1)⊗Uχ(1) is broken
completely and the high temperature phase which is symmetric. The order of both these transi-
tions remain unclear. At zero temperature as µ increases one expects the lattice to get saturated
with baryons which leads to a phase transition from a super-fluid to a normal phase. Renormaliza-
tion group arguments suggests that if this phase transition is second order it will be a mean field
transition[22].

Little is known about the phase diagram in two spatial dimensions. One possible phase struc-
ture was discussed in [23] in the context of the continuum theory using an effective field theory
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approach. However, due to infrared divergences that occur at finite temperatures a complete pic-
ture could not be inferred. Although continuous symmetries cannot break in two spatial dimensions
at finite temperatures, a Berezinky-Kosterlitz-Thouless (BKT) type phase transition can exist [24].

6. RESULTS

Although spontaneous symmetry breaking cannot occur in a finite volume, one can still con-
clude that the symmetry is broken in the infinite volume limit by studying the behavior of vari-
ous observables as a function of the volume. In our case the U(2) symmetry at µ = 0 implies
GC(z,z′) = 2GB(z,z′) and so χC = 2χB. In the presence of a chemical potential since the U(2)

symmetry is broken, this equality no longer holds. The formation of a diquark condensate can be
inferred from the growth of χB with the volume. Further, the helicity modulus YC and YB, both
must reach a non-zero constant if the Uχ(1) and UB(1) are broken. All these expectations can be
understood quantitatively using chiral perturbation theory in the ε-regime based on an effective
action, which at µ = 0 turns out to be

Seff =
∫

ddx

[

F2

2 (∂µ~u) · (∂µ~u)+
B2

2 (∂µ~S) · (∂µ~S)

]

, (6.1)

where ~u(x) is a unit two-vector field and ~S(x) is a unit three vector field. This chiral Lagrangian is
equivalent to other chiral Lagrangians found in the literature [11]. However, we note that the fact
that F and B may not be the same was not considered in earlier work . Using the chiral Lagrangian
is straight forward to extend the results of [25] to obtain a finite size scaling formula for various
quantities.

6.1 d = 3 with µ = 0

The finite temperature phase transition that restores U(2) →U(1) symmetry breaking can be
studied in our model by tuning T at fixed Lt . We have performed extensive calculations at a fixed
Lt = 4 for different spatial lattice sizes L varying from 16 to 256 and for many different values of
T . We look for two signatures of the broken phase:

(a) Both YC and YB must go to non-zero constants at large L. These constants are equal to the low
energy constants, F2 and B2 in eq.(6.1), of a three dimensional low energy effective theory.
We use the relations

YC = F2 +b/L+ c/L2; YB = B2 +b′/L+ c′/L2. (6.2)

to extrapolate our data to extract F2 and B2.

(b) The finite size scaling of the chiral susceptibility χC can be shown to be

χC =
Σ2

3 {L3 +β1(
2

F2 +
1

B2 )L2}+aL (6.3)

where β1 = 0.226 is the shape coefficient for cubic boxes.
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Figure 2: The inset shows YC and YB as a function of L at T = 2.918. We find F2 = 0.0965(5) and
B2 = 0.0559(4). Using these values a fit of χC as a function of L gives Σ = 0.2372(3) and a = 2.11(6) with
a χ2/DOF = 0.5. The main plot shows χC versus L and the fit (solid line).

Figure 2 shows our results at T = 2.918, a point in the broken phase. As can be seen from the
graph, the above expectations are satisfied extremely well. In particular we find F 2 6= B2.

Figure 3 shows the dependence of χC as a function of L for different temperatures. While
χC increases as L3 at T = 2.9275, it saturates at T = 2.9285 and 2.9292 for large L. Note that
extremely large lattices are necessary to see this saturation. Thus, there is a phase transition such
that 2.9275 < Tc < 2.9285. The peculiar non-monotonic behavior of χC before it saturates appears
to rule out a second order behavior but is consistent with a first order transition. We can fit χC to
the form

χC =
A+BL3 exp(−∆FL3)

1+C exp(−∆FL3)
(6.4)

which can be motivated as arising due to the presence of two phases whose free energy densities
differ by ∆F . We find this form captures the structure in the data well for L ≥ 48 for both T =

2.9285 and 2.9292.
In the high temperature phase one can compute screening lengths ξ by looking at the ex-

ponential decay of GC(z,z′) for large spatial separations between z and z′. Similarly in the low
temperature phase F2 and B2 have dimensions of inverse length and hence can be used to provide
natural length scales in the problem. At the phase transition we find that none of these length scales
diverge but all are of the order of 40 to 50 lattice units indicating that the transition is a rather weak
first order transition.

A renormalization group analysis of the fluctuations of the order parameter field, which in our
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Figure 3: Plot of χC versus L for different values of T across the phase transition. The solid lines at
T = 2.9285 and T = 2.9292 are fits to the first order form discussed in the text.

case is a complex three vector field Φi(x), i = 1,2,3, has been performed using the ε-expansion
[26, 27]. Interestingly, the universal field theory one studies also describes the possible normal-
to-planar super-fluid transition in 3He [28]. One finds no stable fixed point which implies that any
observed phase transition must be a fluctuation driven first order transition. Our observations favor
this conclusion. On the other hand recently it has been proposed that the ε-expansion results may
be misleading [28]. It is well known that first order transitions can arise due to model dependent
features. In order to minimize such dependences it may be useful to repeat the above calculation
for other values of Lt .

6.2 d = 3 at zero temperature

In order to study zero temperature results we set Lt = L, T = 1 and compute observables for
various values of µ and L. In this case since UB(1)⊗Uχ(1) is expected to be broken completely
the following should be observed:

(a) The diquark susceptibility χB should grow with the volume,

χB ∼ ∆2

2 L4 (6.5)

where ∆ = 〈χ1χ2〉 = 〈χ2χ1〉 6= 0 is the diquark condensate.

(b) The chiral susceptibility χC should saturate with L showing that the GC(z,z′) decays expo-
nentially for large separations between z and z′. Note that the two correlators GC and GB are
no longer related by a symmetry when µ 6= 0.
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Figure 4: The left plot shows χB and χC as a function of L at µ = 0.01. As expected χB grows as L4 while
χC saturates. For the same value of µ the right plot shows both YC and YB grow linearly with L.

(c) Both the helicity modulus YC and YB, as defined in eqs.(4.6),(4.8) should grow linearly with
L.

These expectations are borne out in our calculations as can be seen in Figure 4.
As the chemical potential increases the lattice is filled with baryons. This can be seen in the

inset of figure 5 where the baryon density is plotted as a function of µ . Baryon super-fluidity
cannot exist beyond saturation and this leads to a phase transition to the non-super-fluid phase.
Renormalization group arguments show that this phase transition must belong to the mean field
universality class for d ≥ 2 [22]. It was recently shown that the critical chemical potential µc =

0.5cosh−1(
√

10) = 0.909223.. in the mean field approximation [16]. The diquark condensate was
also shown to be1

∆ =

√

1
18

(√
10− cosh(2µ)

)

(6.6)

In our calculations we extracted ∆ by fitting χB to the relation

χB =
∆2

2 [L4 +AL2 +B]. (6.7)

Figure 5 shows our results along with the mean field result and the result with one-loop corrections.
We find that µc is in excellent agreement with mean field theory while ∆ requires the inclusion of
one-loop corrections.

1There is a factor of two mismatch the formula quoted here and what can be found in [16]. The origin of this
mismatch is the normalization of our kinetic term in eq.(2.1) as compared to the one in [16].

147 / 9



P
o
S
(
L
A
T
2
0
0
5
)
1
4
7

2-color QCD Fu-Jiun Jiang

0.84 0.86 0.88 0.9 0.92 0.94
µ

0

0.04

0.08

0.12

0.16

0.2

∆

0.84 0.86 0.88 0.9 0.92 0.94 0

0.2

0.4

0.6

0.8

1

 ξ−1
0.84 0.87 0.9 0.93

 µ

0.84
0.88
0.92
0.96

1
1.04

nB

Figure 5: The plot of ∆ and ξ−1 as a function of µ . The dotted line is the mean field result and the solid
line includes the one loop corrections. The dashed line is a fit to the form ξ −1 = A

√

(µ −µc). The inset
shows the baryon density nB as a function of µ .

For µ > µc it costs energy to remove a single baryon and we expect this energy to grow
as (µ − µc). Since this phase describes non-relativistic particles the spatial correlation length ξ ,
obtained from GB(z,z′), must scale as 1/

√

(µ −µc). Figure 5, also shows that this expectation is
borne out.

6.3 d = 2 Phase Diagram

We have also studied both the zero temperature and finite temperature phase transitions in two
spatial dimensions. While the zero temperature transition is a mean field transition from a super-
fluid phase to the saturated phase like in d = 3, the finite temperature phase transition at µ = 0 is
different and interesting. Mermin-Wagner theorem forbids the breaking of a continuous symmetry
in d = 2 at finite temperatures. However, the U(1) part(s) of the U(2) symmetry at µ = 0 can
undergo a BKT type phase transition. This can result in long range correlations in χC and χB at low
temperatures. If this is true one would expect

lim
L→∞

YC =

{

Const. T < Tc

0 T > Tc
(6.8)

while limL→∞YB = 0. Further, the screening lengths ξ obtained from GC(z,z′) will behave as

ξ = Aexp
(

B√
T −Tc

)

, T > Tc (6.9)

Figure 6 shows that indeed our data is consistent with these expectations. We see that YC is a
constant and YB decreases (although very slowly) with L at T = 0.1. For T ≥ 0.7 we can begin to
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Figure 6:

see both YC and YB decrease with L. For 0.8 ≤ T ≤ 1.03 ξ extracted from GC(z,z′) fits well to the
BKT form with Tc ∼ 0.6. In a typical BKT phenomena, the super-fluid density is expected to show
a universal jump at the transition. A naive estimate of this jump suggests that YC(T = TC) = 2/π ∼
0.6366..., in our normalization. Our data shows a different jump suggesting that the transition is
quantitatively different although qualitatively similar to the familiar BKT transition.
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