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1. Introduction

Lattice simulations with a relativistio-quark will become feasible with the next generation of
super computers|[f} B} 3]. Atleast in the quenched approximation, theskines should allow for
lattice sized_/a = O(100) so that the conditionam, < 1 andL ~ 1—2fm can be fulfilled at the
same time (se4|[4] 5] for studies approaching this regime). Among other teingscomputations
will provide clear tests of effective field theories like HQHT [6] or of altive formulations for
relativistic heavy quarks on the latticg 7, 8]. Depending on the outconmthefuevidence can
be produced supporting the use of these theories, especially in viewrgfutations with light
dynamical flavors, where lattice sizes suitable for the inclusion of relatiigtienched) heavy
quarks are far to come.

On the numerical side simulations in that regime may be affected by round-af§eThe lat-
tice quark propagator is usually computed numerically by employing CG-typeitilions to solve
the system of linear equatiols) = n for ¢, where the matribD is some discrete representation
of the Euclidean Dirac operator. Defining ttiee slice nornof a Dirac vectony(t,X) on the time
slicet as

W= |5 (WaEX)) Yaxt), (1.1)

X.a,a
(greek indices represent spin, roman indices colour) we argue thatatiens where

mtin|‘1U|t

mtax| Pl

~ arithmetic precision (1.2)

the solver residual

rz\/Z\n—Dw/Z!nr? (1.3)

becomes an un-reliable indicator for convergence and the solver itdsltdgproduce sensible
results. Both effects are due to accumulated round-off errors.

We propose an algorithm with the potential to overcome these problems. \Yessutpcom-
posing the time direction of the lattice into a sufficient number of adjacent olapg@ng domains
to avoiding the situation in eq[ (3.2) within each domain. By applying the Schaleemating
procedure[[P[ 10] to these domains, we are able to recursively coniteusolution over the whole
lattice in a controlled way.

We first present a numerical example for the case of free Wilson ferririche 4-dimensional
QCD Schrédinger Functiondl [11] where a CG-type solver producesliable results although
proper convergence is indicated by the residual infeq] (1.3). We thienwthe proposed algorithm
and demonstrate its efficiency considering as an example the 1-dimensioaaleQuation. We
compare our numerical results to aractreference solution for the propagator in this model,
computed with Mathematica. The terexactrefers to the fact that within this framework one
can vary the arithmetic precision even beyond double precision and yhga@bconfidence in the
numerical solution. As reported ifi [12,]13] 14], the Schwarz alternatiageplure can of course
also be applied to the fully interacting 4-dimensional theory.
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Figure 1: BiCGstab solver residualfor the solution of the free Wilson Dirac propagator on & £ -lattice
with T = {60,70,80,90,100,110} after convergence (triangles) and after having changesidio¢ion on the
last 10 time slices (squares) and on the last 20 time slidedg€) by+10% and+100% respectively.

2. Theproblem in 4 dimensions

We illustrate the problem with a numerical study in the QCD Schrodinger Fumattising the
double precision version of the MILC code [15]. The parameters waere: 0.5 (k = 0.111111),
L/a=12, andT /a= {60,70,80,90,100,110} (a= 1 in the following) and we used a unit gauge
background. Using the stabilised bi-conjugate gradient algorithm (Bi@B§i8], we solved
Dy = n for g, which corresponds to a column of the quark propagator. As is commatigga
we used < 10715 for the stopping criterion.

As a test of the solver residual and of proper convergence for tarmge changed the solution
Y(t,X) by +10% (or +100%), once fdr> T — 10 and once fot > T — 20 for all the values o
mentioned above and then recomputedFigure[]l shows the results. The triangles represent the
achieved solver residual for each choicelTond the squares and circles represent the residual
after having changed the solution for T — 10 andt > T — 20, respectively. We see that above
a certain time-extent of O(100) the residual ceases to be sensitive to a change of the solution by
10% (or 100%). In this situation the computed solutipeannot be considered correct.

3. The 1-dimensional Dirac operator

The problem we observed in 4 dimensions is also present in 1-dimension. skcailtuthis we
implemented the equatiddy = n in MATLAB with D given by the 1-dimensional free Wilson
lattice Dirac operator with periodic boundary conditions,

DYy = 8y — K [yxr1(1+ y1) + &yp1(1— )] (3.1)

wherek = 1/(2m+-2) is the hopping parameter. We solved fipusing a stabilised BiCG algorithm

in double precision. Since we implemented the Dirac equation on the torus peeteéike problem

to appear at around twice the time extent observed in the Schrodingdiohaic Indeed, for

T =180, m= 0.5 andr = 10~° the solution vector varies in time by more orders of magnitude
than can be represented by the arithmetic precision and vanishes exattlg f® central lattice
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Figure 2: Domain of sizeL; = 6. The black dots represent the bulk of the donfajthe interior boundary
JN* is represented by the half-filled dots and the exterior banndA is represented by the grey circles.
The complement of\ is A\*.

points. One therefore expects the solution to be wrong for a time intervak ldrgn 10 time slices
aroundT /2.

4. The (multiplicative) Schwar z alternating procedure (SAP)

We now give our proposal to circumvent the problem. We decompose thedimewion of
the lattice into a number of domains, such that the solution is expected to detewdyyorders of
magnitude than covered by the arithmetic precision within each domain.

We adopt the notation given by Liischgr][12] and briefly review somie baginitions. We de-
compose the problem intg,,, non-overlapping domains. Each domaiias an interior boundary
dN* and an exterior boundagA (cf. figure[R). The position-space Dirac operator may be written

in the form
D
p— | Pr Daa : (4.1)
Da/\* D/\*

where the matriceB andDa« act on the domaivk and its complemem*, respectively. The off-
diagonal matrice® 5 andDya« contain those interactions that coupléo the adjacent domains.

Following [12], the algorithm we propose visits each oftihg, domains in successive sweeps
and updates the current approximatipro the solution oDy = n according to

@' =y +DyN(n—Dy). (4.2)

Here we takap = 0 as the initial guess. We introduce the domain based stopping criterion

Fdom = mAaX{ /1Dy - nl%/ltﬂ!,z\} <107 (4.3)

Note that we normalise with respect to the solution vector since one usuadyadskinction as
sourcen.

5. Numerical results

We first computedy on the whole lattice in 1 dimension by means of Fourier transformation in
Mathematica. Since this software allows for arbitrary numerical precisiotowtel thereby obtain
anexactreference solution. We then implemented the SAP solver in MATLAB, whereiidher
numerical tests have been performed. Within each sub-domain the auypdate for the solutiogy

IHere| - |5 is the Dirac norm restricted to the domalin
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Figure 3. Left: Example of solver accuracy fogm = 3,m= 0.5 andT = 120 (vertical lines indicate the
domain-borders). The blue lines (red circles) represantdlative error of the result obtained by the BiCG
(SAP) solver with respect to thexactsolution. Right: Time-slice residual for the problaﬂl(n —-Dy)=90
after the 8th sweep of the SAP solver over the 1st donigais 120).

is computed using a BiCG solver which runs until convergence. As an dgamediscuss the case

T =120 andn= 0.5. The SAP solver takes about 10 times more iterations than the conventional
(unreliable) BiCG with a global stopping criterion like in efy. {1.3). Notice thatrtiatrix x vector
operations needed in the SAP solver clearly involve smaller matrices. Hovievbeavy quarks

the condition number of the Dirac matrix is not very large and the main issue & ththprecision.

The results for both algorithms are illustrated in figlire 3 in terms of the time-sliagveserror

with respect to thexactsolution. Two comments are in order :

¢ Without domain decomposition the solutigndeviates strongly from thexactsolution de-
spite alleged proper convergence of the solver indicated by the residual

e The circles in fig. [[3 show the relative error for the solution computed with théaade
suggested in this work. Notably it stays at the desired level over the wholekitast of the
lattice, indicating uniform convergence.

6. Conclusions

We have given numerical evidence that conventional CG-solvers tamannd-off problems
when the lattice volume and the quark mass are large. In particular the sedidualr given in
eq. (1.B) is misleading in these cases. We have performed preliminary testsatgforithm and a
residual based on the Schwarz alternating procedure that do net Boffh these problems.

In contrast to the conventional solver, the algorithm we suggest agewén a constant preci-
sion over the whole lattice. Still one might expect the local residual to growirwgtach domain.
This is indeed visible when the probldhxl(n —Dy) = Jis considered (see figufg 3, right plot).

The parameter range where the algorithm applies is complementary to thanf@mntional
CG-solvers for small quark masses on the one hand and to that for tbedpre based on the
hopping parameter expansion for very large quark magsgs [17] orteeland. The algorithm
suggested here should in fact allow a more precise assessment ofghefauark masses where
the latter method is applicable.
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The implementation in 4 dimensions should be straightforward. In QCD a gaimforp&nce
could presumably be achieved by starting with the free propagator as iniéiasglt would be very

interesting to investigate the influence of overlapping domains on the solffermpance.
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