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In recent years there has been a lot of progress in lattice perturbation theory [1, 2]. In particular,
the implementation of automated perturbation theory routines has allowed many problems to be
tackled. Lattice perturbation theory has many applications, for example the determinations of
improvement coefficients and renormalization factors. In addition, lattice perturbation theory is
used in connecting non-perturbative simulations to quantities of interest to the wider high-energy
community. An example of this is the recent determination of the strong coupling constant αs [3].

In this report we present results of our one-loop calculations of current renormalizations, action
parameters and quark masses for the Fermilab fermion action [4]. The lattice perturbation theory
produces an estimate of the quark’s pole mass. This can be converted into the MS scheme at some
scale µ . We give a few details of this conversion and report preliminary values for the quark masses.
These are compared to the PDG values.

Simulating heavy quarks on the lattice poses a special problem because the scale m0a is not
small for typical lattice spacings. For actions designed for light quarks O(m0a) errors can be large.
There are a few different approaches to this problem. One popular one is the Fermilab approach,
which resums all mass dependance into the coefficients in the action.

The Fermilab action is

S = a4 ∑
x

ψ̄(x)
[

m0 +
1+ γ4

2
D−

4 −
1− γ4

2
D+

4 +ζ~γ ·~D

−
arsζ

2
4

(3)
−

iacBζ
2

~Σ ·~B−
acEζ

2
~α ·~E

]

ψ(x) (1)

where definitions of the various operators can be found in [4]. This action is designed to smoothly
interpolate between the zero mass and infinite-mass limits. As such it is ideal for simulations of
charm quarks, where other methods (such as NRQCD) might have problems [5]. All the coeffi-
cients in the Fermilab action are mass dependent, however at tree level we can use

ζ = rs = cE = cB = 1. (2)

Using our automated perturbation theory techniques we have completed all the “basic” one-
loop calculations for this action. These are the mass and wavefunction renormalizations, the renor-
malization of heavy-light and heavy-heavy vector and axial vector currents and the one-loop match-
ing of the action parameters cB and cE . In the following sections we will present results for the
action parameters and the mass renormalizations.

All of the calculations presented here were carried out with using our automated perturbation
theory codes. Apart from the wavefunction renormalization all these quantities are infrared finite
and gauge invariant. Infrared divergences in individual diagrams were regulated by using a gluon
mass.

To match the coefficients cB(cE) we compute the scattering of a quark off of a background
chromo-magentic(electric) field in both the lattice and continuum field theories, then tune the action
parameters until the difference vanishes. The relevant diagrams are shown in figure 1.

One interesting feature of our calculation is the use of lattice to lattice matching [6]. Rather
than computing the continuum contribution using standard methods, we use a simple lattice theory,
with a spacing a′ that is driven very small. Figure 2 illustrates this for two cases, naive fermions
(which have a quadratic approach to a′ = 0) and Wilson fermions (which have a linear a → 0
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Figure 1: Diagrams for matching action parameters

Figure 2: One loop lattice to lattice matching of δB = cB − counterterms at m0a = 0.1, with improved glue.

behaviour). What is shown in figure 2 is actually the difference between the two sets of diagrams
(Fermilab at spacing a and Wilson/naive at spacing a′) there are additional counterterms in the
matching coming from the one loop part of ζ , [7] has details. One sees that the same result for the
matching coefficient δB is obtained using the continuum limit (a′ → 0) of either Wilson or naive
quarks for the continuum side of the matching.

The one-loop contribution to cB is plotted in figure 3. The results for cE are very similar. It
is clear from the figure that the result, when tadpole improved, is nearly zero over the whole range
of interesting masses (0 < m0a < 2). This means that errors due to using only the tree level action
parameters have likely been overestimated. This conclusion only applies if the action has been
tadpole improved. The unimproved coefficients are quite large.

To date all lattice determinations of the hyperfine splittings in the J/φ system have come out
too low ([8] and [9]). These splittings are quite sensitive to the coefficient of Σ ·B so it was believed
that the one-loop determination of cB would bring the splittings up. This is not the case, the one-
loop coefficient is very small. However, there is evidence [9] that the discrepancy in the hyperfine
splittings is decreasing as a → 0. A determination with the fully O(a2) improved Fermilab action
[10] would be very useful.

In addition to the action parameters, we have computed the quark masses for the Fermilab
action. This calculation is similar to [11], however we have used the Symanzik improved gluon
action. There are two masses to compute in the Fermilab formalism, the rest mass M1 and the
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Figure 3: The one-loop coefficient of Σ ·B, with and without tadpole improvement

kinetic mass M2. These are defined via the small pa expansion of the quark energy

E = M1 +
p2

2M2
+O(p4a4). (3)

The rest mass has the perturbative expansion M1 = M[0]
1 + αV (q∗)M[1]

1 + · · · where M[0]
1 =

log(1 + m0a) and αV (q∗) is the QCD coupling in the V scheme evaluated at the BLM [12] scale.
The kinetic mass is usually expressed as follows

M2 = ZM2

expM1 sinhM1

1+ sinhM1
(4)

where M1 is the all orders rest mass and

ZM2 = 1+αV (q∗)Z[1]
M2

+ · · · . (5)

Figures 4 and 5 show the one loop coefficients of the rest mass and the kinetic mass factor ZM2 over
a wide range of input bare masses. In all cases the we see a smooth transition from the small to
large mass limits.

The values M1 and M2 can be used to provide two different estimates of the pole mass of the
quark [13]. The first method is to estimate the binding energy, B1a = MQ̄Q′,latt

1 −NQM1a, where
MQ̄Q′,latt

1 is a spin average meson mass computed on the lattice (J/ψ/ηc for the c quark, Bs/B∗
s for

the b quark) and NQ is the number of heavy quarks in the meson (2 and 1, respectively). The pole
mass is then mpole = MQ̄Q′,expt

−B1, where MQ̄Q′,expt is the meson mass taken from experiment.
Beyond the truncation of the perturbation series this method suffers from two major sources of
error. The first is that one needs to divide out the lattice spacing a, and the second is that it is quite
sensitive to the bare mass m0 used as input.

The second method for estimating the pole mass does not suffer from these errors. One begins
with a perturbative determination of M2a and takes

mpole = (M2a)PT MQ̄Q′,expt

MQ̄Q′,latta
. (6)
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Figure 4: The one-loop rest mass, with and without tadpole improvement
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Figure 5: The one-loop kinetic mass renormalization

This method avoids the errors of the method one, the dependance on the lattice spacing cancels and
a small mistuning of the bare mass largely cancels in the ratio.

Once we have a value for the pole mass we can convert it into a value for the MS mass at some
scale µ using

mpole = m(µ)

{

1+
4

3π

[

1+ log
(

µ2

m2
0

)]

αV (q∗)
}

(7)

We follow the conventional practice, and quote m(µ) at the scale of the MS mass itself, µ = m. We
use the BLM method to determine the scale q∗ in the coupling αV (q∗). We estimate the relative
systematic error coming from the neglected higher-orders in the perturbative matching as ±α 2

V (q∗).
We obtain

mmethod1
c (mc) = 1.24(1)(9)GeV Fine (8)

mmethod2
c (mc) = 1.22(0)(9)GeV Fine (9)

mmethod1
c (mc) = 1.39(1)(13)GeV Coarse (10)
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mmethod2
c (mc) = 1.30(0)(12)GeV Coarse (11)

mmethod1
b (mb) = 4.4(1)(3)GeV Fine (12)

mmethod2
b (mb) = 4.7(0)(4)GeV Fine (13)

where the first error is from the determination of the lattice spacing (which only affects method
one) and the second our estimate of the unknown two-loop error.

Our best values are the method two determinations on the fine lattice, which compare well
with the PDG values mPDG

c (mc) = 1.25(10) GeV and mPDG
b (mb) = 4.25(15) GeV. These results are

based on preliminary values for the input masses [14] so they may change somewhat.
In this report we have presented results for the action parameters and masses of Fermilab

fermions to one-loop. For truly high precision determinations two-loop precision will be needed.
These calculations are in progress.
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