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We study the B0
s −B0

s mixing amplitude in Standard Model by computing the relevant hadronic

matrix element in the static limit of lattice HQET with the Neuberger light quark action. In the

quenched approximation, and after matching to the MS scheme in QCD, we obtain BMS
Bs

(mb) =

0.940(16)(22).
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1. Introduction

B0
s −B0

s mixing is highly important in testing the Standard Model (SM) and constrains strongly
its extensions. Since it is a flavor changing neutral process it occurs through loops so that the
corresponding mixing amplitude is a sensitive measure of |Vts| and |Vtb|, as the major SM loop
contribution comes from t-quark. The mixing of weak interaction eigenstates B0

s and B0
s induces a

mass gap ∆Ms between the mass eigenstates BsH and BsL. Experimentally, only a lower bound to
∆Ms is currently known, namely ∆Ms > 14.4 ps−1 [1], and the hope is that experimenters will soon
provide us with an accurate measurement.
Theoretically the B0

s −B0
s mixing is described by means of an Operator Product Expansion, i.e. the

Standard Model Lagrangian LSM is reduced to an effective Hamiltonian H ∆B=2
e f f , up to negligible

terms of O(1/M2
W ):

H
∆B=2

e f f =
G2

F

16π2 M2
W (V ∗

tbVts)
2ηBS0(xt)C(µb)Q

∆B=2
LL (µb), Q∆B=2

LL = b̄γµLs b̄γµLs, µb ∼ mb (1.1)

where ηB = 0.55± 0.01 S0(xt) is a known Inami-Lim function of xt = m2
t /M2

W [2], C(µb) is the
Wilson coefficient computed perturbatively to NLO in αs(µb) in the MS (NDR) scheme, and Q∆B=2

LL

is a four-fermions operator coming from the reduction of the box diagrams in LSM to a local oper-
ator in the effective theory. The hadronic matrix element of Q∆B=2

LL is conventionally parameterized
as

〈B0
s |Q∆B=2

LL (µb)|B0
s 〉 ≡

8
3

m2
Bs

f 2
Bs

BBs(µb) , (1.2)

where BBs(µb) is the Bs meson bag parameter and fBs its decay constant.
So far BBs(µb) has been computed by using lattice QCD [3]-[9]. One of the major problems with
those computations is in the following: the standard Wilson light quark lattice action breaks ex-
plicitely the chiral symmetry, which tremendously complicates the renormalization procedure of
Q∆B=2

LL and its matching to the continuum. To get around that problem we compute BBs(µb) by
using the lattice formulation of QCD in which the chiral symmetry is preserved at finite lattice
spacing [10]. On the other hand, it should be stressed that our heavy quark is static, as the currently
available lattices do not allow to work directly with the propagating b quark. Thus our results will
suffer from 1/mb-corrections.

2. Computation on the lattice

In our numerical simulation we choose to work with the action S = SEH
h +SN

l , where

SEH
h = a3 ∑

x

{

h̄+(x)
[

h+(x)−V HYP†
0 (x− 0̂)h+(x− 0̂)

]

− h̄−(x)
[

V HYP
0 (x)h−(x+ 0̂)−h−(x)

]

}

is the static limit of HQET action [11] which has been modified after using the so-called HYP
(hypercubic blocking) procedure [12], that is enough to substantially improve the signal/noise ratio
[13] [the field h+(h−) annihilates the static heavy quark (antiquark)]. SN

l = a3 ∑x ψ̄(x)D(m0)
N ψ(x) is

the overlap light quark action with

D(m0)
N =

(

1− 1
2ρ

am0

)

DN +m0, DN =
ρ
a

(

1+
X√
X†X

)

, X = DW − ρ
a

,
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Figure 1: Effective binding energy of the 0−-state when currents are local (unfilled symbols) or smeared
(filled symbols)

where DW is the standard Wilson-Dirac operator. The overlap Dirac operator D(m0)
N verifies the

Ginsparg-Wilson relation {γ 5,D(m0)
N } = a

ρ D(m0)
N γ5D(m0)

N and the overlap action is invariant under
the chiral light quark transformation [14]

ψ → ψ + iεγ5
(

1− a
ρ

D(m0)
N

)

ψ , ψ̄ → ψ̄(1+ iεγ5),

which is essential to prevent mixing of four-fermion operators of different chirality [15]. In other
words, in the renormalization procedure, the subtraction of the spurious mixing with d = 6 opera-
tors will not be needed.
We thus compute the two- and three-point functions:

C̃(2)±
AA (t) = 〈∑

~x

Ã±
0 (~x, t)Ã±†

0 (0)〉U

t�0−→ Z̃Ae−εt , (2.1)

C̃(3)
VV+AA(ti, t) = 〈∑

~x,~y

Ã+
0 (~x, ti)Õ1(0,0)Ã−†

0 (~y, t)〉U

ti−t�0−→ Z̃A v〈Bs|Õ1(µ)|Bs〉v e−ε(ti−t), (2.2)

C̃(3)
SS+PP(ti, t) = 〈∑

~x,~y

Ã+
0 (~x, ti)Õ2(0,0)Ã−†

0 (~y, t)〉U

ti−t�0−→ Z̃A v〈Bs|Õ2(µ)|Bs〉v e−ε(ti−t), (2.3)

Ã±
0 ≡ h̄±γ0γ5s, Õ1 = h̄(+)iγµ(1− γ5)sih̄(−) jγµ(1− γ5)s j, Õ2 = h̄(+)i(1− γ5)sih̄(−) j(1− γ5)s j.

√

Z̃A = 〈0|Ã−
0 |Bs〉v = 〈0|Ã+

0 |Bs〉v and ε is the binding energy of the pseudoscalar heavy-light me-
son. In C̃(2)±(ti, t) one current Ã±

0 is local whereas the other is smeared. The role of the smearing
is to isolate earlier the ground state [16], as shown in Fig. 1 1. We see that the same state is isolated
when purely local currents are used (with those currents the signal does not exist if V HYP

0 is not used

in the heavy quark action). The source operators in C̃(3)
VV+AA(ti, t) and C̃(3)

SS+PP(ti, t) are the smeared
currents Ã±

0 , whereas the four-fermion operators Õ1 and Õ2 are purely local. In (2.1), (2.2) and (2.3)
the subscript "v" and superscript "∼" are designed to remind the reader that states and operators
are defined in HQET. Note that in the computation of C̃(3)

VV+AA(ti, t) and C̃(3)
SS+PP(ti, t) there are two

terms, coming from two different Wick contractions, namely ∑
i

Bii(t)∑
j

B j j(ti) and ∑
i, j

Bi j(t)B ji(ti),

where i, j are the color indices and Bi j(t) = Tr
[

∑~x γµLS
†ik

L (0;~x, t)γ0γ5S
k j

H (~x, t;0)
]

; SL and SH

are the light and heavy propagators respectively and the trace is over spinor indices.

1Even if the time interval from which we extract the binding energy starts at t = 9 (green line), the overlap with
radial excitations is quite reduced since t = 6 when currents are smeared.
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Figure 2: Signals for R1,2(ti, t) defined in eq (2.4): green and blue lines indicate the time interval on which
we fit the signal to a constant to extractB̃1(a) and B̃2(a) respectively

After having computed the correlation functions (2.1), (2.2) and (2.3) we build the following two
ratios R1(ti, t) and R2(ti, t):

R1(ti, t) =
C̃(3)

VV+AA(ti, t)
8
3 Z̃2

AC̃(2)+
AA (ti)C̃

(2)−
AA (t)

ti−t�0−→ v〈Bs|Õ1|Bs〉v
8
3 |〈0|Ã−

0 |Bs〉v|2
≡ B̃1(a),

R2(ti, t) =
C(3)

SS+PP(ti, t)

− 5
3 Z̃2

AC̃(2)+
AA (ti)C̃

(2)−
AA (t)

ti−t�0−→ v〈Bs|Õ2|Bs〉v

− 5
3 |〈0|Ã−

0 |Bs〉v|2
≡ B̃2(a). (2.4)

Those ratios are calculated either with a fixed time t ∈ [−6,−8,−10,−12,−14,−16] and t i free,
or by fixing ti ∈ [6,8,10,12,14,16] while letting t free. We take the average of the two options. In
Fig. 2 we show the quality of the signals for R1,2(ti, t), with ti = 6 fixed. The signal for B̃1(a) is
quite stable as a function of ti, whereas the signal for B̃2(a) rapidly deteriorates for larger ti, and is
completely lost for ti > 10.

3. Extraction of physical BBs

Three steps are required to extract BBs ≡ B1 from the lattice:
(1) B̃1,2(a) are matched onto the continuum MS(NDR) scheme at NLO in perturbation theory at
the renormalization scale µ = 1/a [15],
(2) B̃1,2 are evolved from µ = 1/a to µ = mb by using the HQET anomalous dimension matrix,
known to 2-loop accuracy in perturbation theory [7, 17],
(3) B̃1,2(µ = mb) are then matched onto their QCD counterpart, B1,2(mb), in the MS(NDR) scheme
at NLO [17].
The advantage of using a chiral light quark action for the step (1) lies in the fact that four-fermion
operators can mix only with a four-fermion operator of the same chirality. In other words we have
not more than 4 independent renormalization constants in the renormalization matrix, because Õ1

and Õ2 can mix neither with Õ3 ≡ h̄+γµLs h̄−γµRs, nor with Õ4 ≡ h̄+(1− γ5)s h̄−(1+ γ5)s :

(

B̃MS
1 (µ)

B̃MS
2 (µ)

)

=

(

Z11(aµ) Z12(aµ)

Z21(aµ) Z22(aµ)

)(

B̃1(a)

B̃2(a)

)

.
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β V Nconf ρ ms
0

6.0 163 ×32 80 1.4 0.06 GeV

5.85 163 ×32 30 1.6 0.09 GeV

Table 1: Parameters of our simulations: ms
0 and ρ have been chosen following [18, 19]

Actually, because of the heavy quark symmetry, those constants are not all independent. By using

the heavy quark symmetry (HQS) transformations h̄(±)(x)
HQS(i)−→ − 1

2ε i jkh̄(±)(x)γ jγk (i = 1,2,3),
and the equations of motion for the heavy quark h̄(±)γ0 = ±h̄(±), we see that:

OSS+PP ≡−O(VV+AA)0
, OVV+AA

HQS(i)−→ OVV+AA, OSS+PP
HQS(i)−→ −O(VV+AA)i

.

As the action is invariant under the HQS transformations, we can deduce important constraints on
the renormalization matrix Zi j:

〈OVV+AA(µ)〉 = Z11〈OVV+AA(a)〉+Z12〈OSS+PP(a)〉,
〈OVV+AA(µ)〉 = Z11〈OVV+AA(a)〉−Z12〈O(VV+AA)i

(a)〉 (HQS(i)),

which implies that Z12 = 0. Moreover

〈OSS+PP(µ)〉 = Z21〈OVV+AA(a)〉+Z22〈OSS+PP(a)〉,
−〈O(VV+AA)i

(µ)〉 = Z21〈OVV+AA(a)〉−Z22〈O(VV+AA)i
(a)〉 (HQS(i)),

− ∑
i=1,3

O(VV+AA)i
(µ)±O(VV+AA)0

(µ) ≡ −〈OSS+PP(µ)〉−〈OVV+AA(µ)〉,

= (3Z21 −Z22)〈OVV+AA(a)〉−Z22〈OSS+PP(a)〉,
= −(Z11 +Z21)〈OVV+AA(a)〉−Z22〈OSS+PP(a)〉,

which leads to Z21 = (Z22 −Z11)/4.
Finally we have

(

B̃MS
1 (µ)

B̃MS
2 (µ)

)

=

(

Z11(aµ) 0
1
4 [Z22(aµ)−Z11(aµ)] Z22(aµ)

)(

B̃1(a)

B̃2(a)

)

Therefore only two independent renormalization constants are required to match the bag parameters
B̃1,2(a) computed on the lattice to their counterpart renormalized in MS scheme.

4. Results and discussion

Our results are based on two simulations, with the parameters given in Tab. 1. We find BMS
Bs

(mb) =

0.940(16)(22), where the first error is statistical, the second is systematic and contains the error
from the estimation of αs(1/a) and the finite a effects. From Fig. 3 it can be seen that our value
is larger than the previous static result [4]. This difference is likely due to the use of Neuberger
light quark action (no subtractions), due to the use of the HYP procedure, or the combination of
both. From Fig. 3 we also notice that our value is also somewhat larger than the results obtained
with the propagating heavy quark, which is due to our neglect of 1/mb corrections or their not so
proper renormalization. JLQCD collaboration showed that the errors due to quenching are likely to
be small [8, 9]. We also plan to address that issue by unquenching the B0

s −B0
s mixing amplitude in

the static limit and by avoiding the subtraction procedure as well. The feasibility study by means
of twisted mass QCD is underway.
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Figure 3: Various lattice values of BMS
Bs

(mb) [3]-[9]; blue symbols correspond to a computation made with
a static heavy quark
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