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1. Introduction

With the Wilson fermion formulation chiral symmetry is explicitly broken at finite latticacs
ing and the consequences of this explicit breaking have to be dealt withnd\those is the fact
that Q(a) counter terms in the Symanzik expansion are no longer excluded and thaishe
conserved Noether current associated with a continuous chiral symofiéiiey lattice action.

The first problem is addressed by the Symanzik improvement programmehe.eddition
of irrelevant operators to both the action and the composite fields. By tunéngogfficients of
only a few terms it is possible to remove thé&a) scaling violations from the theory. Here we
compute the improvement coefficient for the isovector axial cume(g%), which — together with
the improvement of the action [1] — will ensure the absence (@) Gattice artifacts inall matrix
elements of the PCAC relation, which involve insertions at finite separation [2]

The normalization factoZA(gg) of the improved axial current is obtained by enforcing a
continuum-like transformation behavior under infinitesimal chiral rotationsceSthe isovector
chiral symmetry is recovered in the continuum and the normalization conditiasedon a local
identity, Za is finite and scale—independent.

For unexplained notation and additional details about the improvement am@lwation con-
ditions we refer to [3] and [4], respectively.

2. Axial current improvement

When calculating a bare quark mass on the lattice from matrix elements of the FRRGAGN
A (X) = 2mP3(x) (2.1)

any dependence on the kinematic parameters or external states, i.e. éhdetge on the precise
choice of matrix element, is a cutoff effect. A non—perturbative improver@mdition can thus be
obtained by inserting into eq. (2.1) the improved axial current [2]

(A)Z(X) = A% (X) +aca3 (0 + 0;,)P(x) (2.2)

and tuningca such that the masses obtained from two different matrix elements agree2)a(
(9;;) denotes the forward (backward) lattice derivative.

When evaluating improvement coefficients non—perturbatively one hasefo ik mind that
due to cutoff effects in the correlation function used to formulate the improneomndition, the
coefficients themselves are uncertain t@0" While this forbids a unique definition of the im-
proved theory, the @) ambiguities can be made to disappear smoothly if the improvement con-
dition is evaluated with all physical scales kept fixed, while only the latticeisgas varied [5].
In the evaluation of our improvement condition we keep the bare quark msasg (the 1-loop
value forca from [6]) constant, thus ignoring small changes in renormalization factog fix
the relative lattice spacing in the range of bare gauge couplings we cotisidagh asymptotic
scaling [3].

It is also important to make sure that the correlation functions in the improvernedition
are not dominated by states with energy close to the cutoff. If this were #ee ttee improvement

1For the same reasdfy, is uncertain to @a?) after improvement.
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condition might cancel exceptionally large scaling violations arg abtained in this way could
introduce significant (&?) effects.

We construct matrix elements of (2.1) between pseudo-scalar states arattiven in the
Schrédinger functional [7, 8]. More precisely, in this work we use

fa(Xo0; W) = 3|_6z (2.3)
and fp(Xo; w) = |_6z (P(x) 0% (w)) (2.4)

with the pseudo-scalar operator
zey X)T30(x = Y){(y) - (2.5)

It lives at thexg=0 boundary of the SF cylinder and depends on a spatial trial “waveifuriaw.
A quark mass from (2.1) using (2.2) is then givenrby= r +acas+ O(a?) with

1(d0+ 05) fa (x0; )

000 tp(Xo; w)
2fp(X0; W) '

2fp(Xo; w)

r(Xo; w) = and s(Xo;w) = (2.6)

In our chosen setup we now haxg the insertion time, and, the spatial trial wave function, as

parameters for probing the PCAC relation. Enforcing the independdnte quark mass from

these results in e Ar 1 (X0 Wra) — T'(Yo; Wro) 2.7)
als  a s(Xo; Wr1) —S(Yo; Wro) ’

and therefore the sensitivity t is given byaAs.

The combined requirement of large sensitivitydo and explicit control over excited—state
contributions is met with the method proposed in [9] where it is tested in the hadrapproxi-
mation. Therewyo/; from (2.7) are chosen such that wy;o/1) excite mostly the ground and first
excited state in the pseudo—scalar channel, respectively. Thus tlyy ehére states can be moni-
tored directly using the effective massfafp and the sensitivitpAs = as(xo, wr,1) —as(Xo, Wro) 0

—m? is also expected to be large.

The simulations listed in Table 1 are at constant physical volume accordingytoptotic
scaling as described in [3] and the bare (unimproved) PCAC mass isdegthot to~ 10%.

La B mL —ca We simulate a set of three spatial wave functions and
12 520 018(1) 0.0638(23)| approximate the combinationg(wyo/1) that project to

16 542 020055) 0.0420(21) the ground and first excited states through the eigenvectors
24 570 01825) 0.0243(36)| of the correlation matrix [3 9]

Table 1: Simulation parameters fap .

L(W,0) = —a5 (0% 0% (@), (28)

~3L6

where ¢’ is a pseudo—scalar operator at the= T boundary. In Fig. 1 two distinct signals are
clearly visible, which indicates that the approximate projection method workstweur parame-
ters. The energy of the first excited state is not far away faof suggesting that in even smaller
volumes the residual @?) effects would grow rapidly.

Our definition ofca is completed by fixing = yo = T /2 in (2.7) and specifyind. = T and
6 = 0. The results from the simulations summarized in Table 1 are shown in Fig. fuasteon
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Figure 1. Effective pseudo—scalar massesfpf Figure 2: Simulation results foca. The solid
from the3 = 5.42 run. line is given by the interpolating formula (2.9).

of g3. The solid line is a smooth interpolation of the simulation data, constrained in addition
1-loop perturbation theory:

1—0.448592
ca(gd) = —0.00756g3 x 044850,

1-0.8098g3
Itis our final result, valid in the range®B < g% < 1.16 within the errors of the data points (at most
0.004). By performing additional simulations we have verified that the volimesr runs are
scaled sufficiently precisely such that systematic errors due to deviat@nghe constant physics
condition can be neglected. The same also applies to variations in the quark mas

(2.9)

3. Axial current renormalization

In a massless renormalization scheme preservation(aj-@nprovement implies that the
renormalized improved current is of the form [2, 10]

(AR)3 = Za (1+ bamy) (A3 (3.1)

The normalization condition we use [4, 11] is based on [12], the ALPHA bolation’s quenched
determination ofZ,. Since a massless scheme requires the normalization condition to be set up at
vanishing quark mass, in [12] the mass term of the axial Ward identity wapddin the derivation
of the normalization condition. In practice this condition shows a very pnoced quark mass
dependence and thus a potential extrapolation is rather steep and thenladdlie critical point
must be known with high precision.

Performing a chiral transformation in the continuum and keeping track ofitfss term results
in the integrated Ward identity [4]

Y xe (A0 ) A8Y) Ten)
—2m / Py o y:o%xo £ P2(x)AR(Y) Oext) = | / &y (V§(y) Gent) (3.2)

and the choice 0%, = —£%%¢¢"4¢¢/6L° allows us to replace the r.h.s. of (3.2) with by using
isospin symmetry. A normalization condition is then obtained by requiring that tdlds for the
renormalized improved current (3.1).

2No use of spatial wave functions is made in the axial current renorrtializae. here’ = ¢/(w = congt).
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Figure 3: Comparison of the chiral extrapola- Figure 4. Result forZ, from numerical simu-
tion at8 = 5.2 using the new and old normaliza- lations and 1-loop perturbation theory (dashed
tion conditions forZa. line). The Pade fit (solid lines) is given by (3.3).

Fig. 3 shows the results of an evaluation of this condition at a bare gaugérapof = 5.2.
To show the effect of the inclusion of the mass term, also the results with the drfetino [12] are
shown, i.e. when dropping the second term on the |.h.s. of (3.2). While dandtv normalization
condition the slope iamis consistent with zerp the estimate af from the old condition changes
by 30% in the (small) mass range shown. We anyway see thatrfgt 0.02 all mass effects show
a linear behavior. FoB = 5.5 the extrapolation is similar to the one shown and at all other gauge
couplings we can in fact interpolate from two simulations very close to the d¢nitaat.

Table 2: Results for the chiral extrapolations @f, and
estimates for the critical hopping parameter

B L/a T/a Ko Z In addition to three (again asymptoti-
5200| 8 18 0.135856(18) 0.7141(123) | cally) matched lattice sizes &ya= 8,12
5500| 12 27 0.136733(8) 0.7882(35)(39) and 16, we simulated at three larger values
5.715| 16 36 0.136688(11) 0.8037(38)(7) of B and fixedL/a= 8, which corresponds
5290 8 18 0.136310(22) 0.7532(79) to very small volumes. This was done in
72001 8 18 0.134220(21) 0.8702(16)(7) order to verify that our non—perturbative
8.400 8 18 0.132584(7)  0.8991(25)(7)  estimate smoothly connects to the pertur-
9.600| 8 18 0.131405(3) 0.9132(11)(7)

bative predictions [13, 14]. The first er-
ror we quote forZp is statistical and the
second represents our estimate of the sys-
tematic error, which originates from devi-

ations from the constant physics condition. There is no estimate of the syistemar for the

B = 5.29 run, which was done only to verify the rapid chang&gfin this region of bare gauge
coupling. It is thus also excluded from a fit, which results in the interpolatimmdla (again
incorporating the 1-loop asymptotic constraint)
. 1-0.918g%+0.062g3 + 0.020g5
Za(90) = > .
1-0.8015g5

(3.3)

4. Summary and Outlook

For the Qa)-improved action with non-perturbatiee [1], we have determined the improve-
ment coefficienta for B >5.2, which roughly corresponds &< 0.1 fm. The improvement condi-
tion was implemented at constant physics, which is necessary in a situatiorQi@eambiguities
in the improvement coefficients are not negligible.

3Any remnant slope is due to the neglecbafas well as contact terms in the second term in the |.h.s. of (3.2).
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Through the calculation th(g%) we have shown that in a lattice theory with two flavors of
Wilson fermions normalization conditions can be imposed at the non—perughatel such that
isovector chiral symmetries are realized in the continuum limit. Since we areingowkith an
improved theory, chiral Ward-Takahashi identities are then satisfied Qe at finite lattice
spacing.

The improvement and normalization conditions were implemented in terms of ¢mmela
functions in the Schrédinger functional framework and evaluated on aofim®nstant physics
in order to achieve a smooth disappearance of tf& @&nd Qa?) uncertainties. Clearly, the meth-
ods employed in this paper may also be useful to comgusndZ, in the three flavor case, where
csw is known non—perturbatively with plaquette and Iwasaki gauge actidsl[].

The determinations ofa andZa were carried out within the ALPHA collaboration’s pro-
gramme to calculate quark masses in a fully non—perturbative framewoekreBhlts of this pro-
gramme and its application to the strange quark mass are presented in [18, 19]
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