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1. Introduction

With the Wilson fermion formulation chiral symmetry is explicitly broken at finite lattice spac-
ing and the consequences of this explicit breaking have to be dealt with. Among those is the fact
that O(a) counter terms in the Symanzik expansion are no longer excluded and that there is no
conserved Noether current associated with a continuous chiral symmetryof the lattice action.

The first problem is addressed by the Symanzik improvement programme, i.e.the addition
of irrelevant operators to both the action and the composite fields. By tuning the coefficients of
only a few terms it is possible to remove the O(a) scaling violations from the theory. Here we
compute the improvement coefficient for the isovector axial currentcA(g2

0), which – together with
the improvement of the action [1] – will ensure the absence of O(a) lattice artifacts inall matrix
elements of the PCAC relation, which involve insertions at finite separation [2].

The normalization factorZA(g2
0) of the improved axial current is obtained by enforcing a

continuum–like transformation behavior under infinitesimal chiral rotations. Since the isovector
chiral symmetry is recovered in the continuum and the normalization condition is based on a local
identity,ZA is finite and scale–independent.

For unexplained notation and additional details about the improvement and normalization con-
ditions we refer to [3] and [4], respectively.

2. Axial current improvement

When calculating a bare quark mass on the lattice from matrix elements of the PCACrelation

∂µAa
µ(x) = 2mPa(x) , (2.1)

any dependence on the kinematic parameters or external states, i.e. the dependence on the precise
choice of matrix element, is a cutoff effect. A non–perturbative improvementcondition can thus be
obtained by inserting into eq. (2.1) the improved axial current [2]

(AI)
a
µ(x) = Aa

µ(x)+acA
1
2(∂µ +∂ ∗

µ)Pa(x) , (2.2)

and tuningcA such that the masses obtained from two different matrix elements agree. In (2.2)∂µ
(∂ ∗

µ ) denotes the forward (backward) lattice derivative.
When evaluating improvement coefficients non–perturbatively one has to keep in mind that

due to cutoff effects in the correlation function used to formulate the improvement condition, the
coefficients themselves are uncertain to O(a).1 While this forbids a unique definition of the im-
proved theory, the O(a) ambiguities can be made to disappear smoothly if the improvement con-
dition is evaluated with all physical scales kept fixed, while only the lattice spacing is varied [5].
In the evaluation of our improvement condition we keep the bare quark mass (using the 1–loop
value forcA from [6]) constant, thus ignoring small changes in renormalization factors, and fix
the relative lattice spacing in the range of bare gauge couplings we consider through asymptotic
scaling [3].

It is also important to make sure that the correlation functions in the improvementcondition
are not dominated by states with energy close to the cutoff. If this were the case, the improvement

1For the same reasonZA is uncertain to O(a2) after improvement.
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condition might cancel exceptionally large scaling violations and acA obtained in this way could
introduce significant O(a2) effects.

We construct matrix elements of (2.1) between pseudo–scalar states and thevacuum in the
Schrödinger functional [7,8]. More precisely, in this work we use

fA(x0;ω) = −
a3

3L6 ∑
x
〈Aa

0(x)O
a(ω)〉 , (2.3)

and fP(x0;ω) = −
a3

3L6 ∑
x
〈Pa(x)O

a(ω)〉 , (2.4)

with the pseudo–scalar operator

O
a(ω) = a6∑

x,y
ζ̄ (x)γ5τa 1

2ω(x−y)ζ (y) . (2.5)

It lives at thex0=0 boundary of the SF cylinder and depends on a spatial trial “wave function” ω .
A quark mass from (2.1) using (2.2) is then given bym = r +acAs+O(a2) with

r(x0;ω) =
1
2(∂0 +∂ ∗

0 ) fA(x0;ω)

2 fP(x0;ω)
and s(x0;ω) =

∂0∂ ∗
0 fP(x0;ω)

2 fP(x0;ω)
. (2.6)

In our chosen setup we now havex0, the insertion time, andω , the spatial trial wave function, as
parameters for probing the PCAC relation. Enforcing the independence of the quark mass from
these results in

−cA =
∆r
a∆s

=
1
a
·
r(x0;ωπ,1)− r(y0;ωπ,0)

s(x0;ωπ,1)− s(y0;ωπ,0)
, (2.7)

and therefore the sensitivity tocA is given bya∆s.
The combined requirement of large sensitivity tocA and explicit control over excited–state

contributions is met with the method proposed in [9] where it is tested in the quenched approxi-
mation. Thereωπ,0/1 from (2.7) are chosen such thatO(ωπ,0/1) excite mostly the ground and first
excited state in the pseudo–scalar channel, respectively. Thus the energy of the states can be moni-
tored directly using the effective mass offA/P and the sensitivitya∆s = as(x0,ωπ,1)−as(x0,ωπ,0) ∝
m?

π
2−m2

π is also expected to be large.
The simulations listed in Table 1 are at constant physical volume according to asymptotic

scaling as described in [3] and the bare (unimproved) PCAC mass is kept constant to' 10%.
We simulate a set of three spatial wave functions andL/a β m ·L −cA

12 5.20 0.18(1) 0.0638(23)
16 5.42 0.200(5) 0.0420(21)
24 5.70 0.182(5) 0.0243(36)

Table 1: Simulation parameters forcA .

approximate the combinationsO(ωπ,0/1) that project to
the ground and first excited states through the eigenvectors
of the correlation matrix [3,9]

f1(ω ′,ω) = −
1

3L6〈O
′a(ω ′)O

a(ω)〉 , (2.8)

whereO
′ is a pseudo–scalar operator at thex0 = T boundary. In Fig. 1 two distinct signals are

clearly visible, which indicates that the approximate projection method works well at our parame-
ters. The energy of the first excited state is not far away froma−1, suggesting that in even smaller
volumes the residual O(a2) effects would grow rapidly.

Our definition ofcA is completed by fixingx0 = y0 = T/2 in (2.7) and specifyingL = T and
θ = 0. The results from the simulations summarized in Table 1 are shown in Fig. 2 as afunction
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Figure 1: Effective pseudo–scalar masses offP
from theβ = 5.42 run.

Figure 2: Simulation results forcA . The solid
line is given by the interpolating formula (2.9).

of g2
0. The solid line is a smooth interpolation of the simulation data, constrained in additionby

1–loop perturbation theory:

cA(g2
0) = −0.00756g2

0×
1−0.4485g2

0

1−0.8098g2
0

. (2.9)

It is our final result, valid in the range 0.98≤ g2
0 ≤ 1.16 within the errors of the data points (at most

0.004). By performing additional simulations we have verified that the volumesin our runs are
scaled sufficiently precisely such that systematic errors due to deviations from the constant physics
condition can be neglected. The same also applies to variations in the quark mass.

3. Axial current renormalization

In a massless renormalization scheme preservation of O(a)–improvement implies that the
renormalized improved current is of the form [2,10]

(AR)a
µ = ZA(1+bAmq)(AI)

a
µ . (3.1)

The normalization condition we use [4,11] is based on [12], the ALPHA collaboration’s quenched
determination ofZA . Since a massless scheme requires the normalization condition to be set up at
vanishing quark mass, in [12] the mass term of the axial Ward identity was dropped in the derivation
of the normalization condition. In practice this condition shows a very pronounced quark mass
dependence and thus a potential extrapolation is rather steep and the location of the critical point
must be known with high precision.

Performing a chiral transformation in the continuum and keeping track of themass term results
in the integrated Ward identity [4]

∫

d3yd3xεabc
〈

Aa
0(y0+t,x)Ab

0(y)Oext

〉

−2m
∫

d3yd3x
∫ y0+t

y0

dx0 εabc
〈

Pa(x)Ab
0(y)Oext

〉

= i
∫

d3y
〈

V c
0 (y)Oext

〉

(3.2)

and the choice2 O
c
ext = −εcde

O
′d
O

e/6L6 allows us to replace the r.h.s. of (3.2) withf1 by using
isospin symmetry. A normalization condition is then obtained by requiring that (3.2) holds for the
renormalized improved current (3.1).

2No use of spatial wave functions is made in the axial current renormalization, i.e. hereO ≡ O(ω = const).
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Figure 3: Comparison of the chiral extrapola-
tion atβ = 5.2 using the new and old normaliza-
tion conditions forZA .

Figure 4: Result forZA from numerical simu-
lations and 1–loop perturbation theory (dashed
line). The Pade fit (solid lines) is given by (3.3).

Fig. 3 shows the results of an evaluation of this condition at a bare gauge coupling ofβ = 5.2.
To show the effect of the inclusion of the mass term, also the results with the method from [12] are
shown, i.e. when dropping the second term on the l.h.s. of (3.2). While for the new normalization
condition the slope inam is consistent with zero3, the estimate ofZA from the old condition changes
by 30% in the (small) mass range shown. We anyway see that foram . 0.02 all mass effects show
a linear behavior. Forβ = 5.5 the extrapolation is similar to the one shown and at all other gauge
couplings we can in fact interpolate from two simulations very close to the critical point.

In addition to three (again asymptoti-β L/a T/a κc ZA

5.200 8 18 0.135856(18) 0.7141(123)
5.500 12 27 0.136733(8) 0.7882(35)(39)
5.715 16 36 0.136688(11) 0.8037(38)(7)
5.290 8 18 0.136310(22) 0.7532(79)
7.200 8 18 0.134220(21) 0.8702(16)(7)
8.400 8 18 0.132584(7) 0.8991(25)(7)
9.600 8 18 0.131405(3) 0.9132(11)(7)

Table 2: Results for the chiral extrapolations ofZA and
estimates for the critical hopping parameterκc.

cally) matched lattice sizes atL/a = 8,12
and 16, we simulated at three larger values
of β and fixedL/a = 8, which corresponds
to very small volumes. This was done in
order to verify that our non–perturbative
estimate smoothly connects to the pertur-
bative predictions [13, 14]. The first er-
ror we quote forZA is statistical and the
second represents our estimate of the sys-
tematic error, which originates from devi-

ations from the constant physics condition. There is no estimate of the systematic error for the
β = 5.29 run, which was done only to verify the rapid change ofZA in this region of bare gauge
coupling. It is thus also excluded from a fit, which results in the interpolating formula (again
incorporating the 1–loop asymptotic constraint)

ZA(g2
0) =

1−0.918g2
0 +0.062g4

0 +0.020g6
0

1−0.8015g2
0

. (3.3)

4. Summary and Outlook

For the O(a)-improved action with non-perturbativecSW [1], we have determined the improve-
ment coefficientcA for β ≥5.2, which roughly corresponds toa≤0.1 fm. The improvement condi-
tion was implemented at constant physics, which is necessary in a situation when O(a) ambiguities
in the improvement coefficients are not negligible.

3Any remnant slope is due to the neglect ofbA as well as contact terms in the second term in the l.h.s. of (3.2).
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Through the calculation ofZA(g2
0) we have shown that in a lattice theory with two flavors of

Wilson fermions normalization conditions can be imposed at the non–perturbative level such that
isovector chiral symmetries are realized in the continuum limit. Since we are working with an
improved theory, chiral Ward–Takahashi identities are then satisfied up toO(a2) at finite lattice
spacing.

The improvement and normalization conditions were implemented in terms of correlation
functions in the Schrödinger functional framework and evaluated on a lineof constant physics
in order to achieve a smooth disappearance of the O(a) and O(a2) uncertainties. Clearly, the meth-
ods employed in this paper may also be useful to computecA andZA in the three flavor case, where
cSW is known non–perturbatively with plaquette and Iwasaki gauge actions [15–17].

The determinations ofcA and ZA were carried out within the ALPHA collaboration’s pro-
gramme to calculate quark masses in a fully non–perturbative framework. The results of this pro-
gramme and its application to the strange quark mass are presented in [18,19].
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