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1. Introduction

Quark masses are parameters of QCD. They can be computed norbatraly on the lattice
once an hadronic input is given. Sticking to the renormalization groupiagiRGI) definition of
the quark mass, lattice results for the strange quark mass with 2 [2, 3, 28, 6] dynamical
flavors differ among each other by more than 40 MeV. Such a sprealdecascribed to various
systematics, mainly cutoff effects and the renormalization procedure, whitlany cases relies
on perturbation theory only. For the result we will present here thernesization is performed in
a fully non-perturbative way, while the lattice spacing is still varied in a smafieaonly (roughly
0.1to 0.07 fm).

We write the relation among the bare current (PCAC) quark nmassid the RGI mash(; as

Mi = Zm(9o) Mi(Qo) , (1.1)

wherei has to be interpreted as a flavor index. The fagtprcan be split into two parts, the first one
connecting the bare massre(u ), the renormalized one (in the Schrodinger functional scheme) at

a given scalqu
M) = 5o 2 m(), 1.2)

and the second ord/m(u ), which relates two renormalized masses and is therefore universal. In
mass independent schemes (like the one we are going to describe) timd &scor is also flavor
independent [7]. Its computation is the main result we report about here.

The renormalization group equations for the couplings are decoupled is independent
schemes and read _

dg am

H@—B(@ ; NWZT@)W\- (1.3)

with g(u) the renormalized coupling at the scale The T and 3 functions can be expanded in
perturbation theory

B(g‘)yo— 0> {bo+b1@®+bog* +...} r(g‘)yo—gz{dﬁdlg%...}, (1.4)
g— g—
and the exact (i.e. valid beyond perturbation theory) solutions of ec®.dan be written
. g 1 1 b
A = u(bp@?) P/ %be 1/ (208 ex {—/ dx [—4—— - —1} } , 1.5
H(bog?) PUJo 1B T bl o2 (1.5)
N o 9 [1(x) do
M; = M (2bog?) ~%/2% ex {—/ dx [———]} 1.6

where the RGI parametefsandM appear as integration constants. At the level of RGI parameters
the connections among different schemes can be given in a simple aridvayadVe thus regard
them as the fundamental parameters of QCD.

2. Running of the quark massin the SF scheme

In terms of Schrddinger functional (SF) correlation functions the b&&®mass reads

£(95 + 90) fa(X0) + caadg do fr(Xo)

2 fp(Xo) Xo=T /2 ’

m(go,K) = (2.2)
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wherek is the hopping parameter. We use the plaquette gauge action and notgtaraly O@)
improved Wilson fermions [8]. The improvement coefficieatis also set to its non-perturbative
value from [9]. For the definition of the SF with Wilson fermions we refer @ @nd to [11] for any
unexplained notation. Here we only recall that the correlation functigrend fp involve matrix
elements of the axial current and the pseudoscalar density operatspsctively. According to
eg. (1.2) the running quark mass at the sqalis obtained by multiplying the mass in eq. (2.1)
by the ratioZa(go)/Zp(go,au). The factorZa is scale independent and can be fixed by Ward
identities [12]. All the scale dependence in the running quark mass coam&# In the SF it can
be defined as

V3f1

(goa L/a) = C (L/2)

where the boundary to boundary correlation functigriakes care of the renormalization of the
boundary quark fields and the constardnsuresZp = 1 at tree level. Eq. (2.2) makes clear that

in the finite volume scheme we are using, the normalization gc&edentified with the (inverse)
extent of the system, which, in turn, is uniquely fixed (up to cutoff effeloysjhe value of the
running couplingg®(L). The non perturbative running of the quark mass is described by the step
scaling functionop(u)

m=0, 6=05 T=2L, 2.2)

my) o Ze(%.2L/3)
m(u/2)  a-0 Zp(go,L/a) |g)_y

which can be viewed as an integrated form of th&unction. Introducing also the step scaling
function for the couplingo(u) = g?(L) (computed in [13]) and solving the following coupled
recursions

op(u) = ) (2.3)

_ A2 o
{ zoajki)tmﬁf T o =20, L=2 e (2.4)
to =t _ M(L/Lned
{Wk — [Ny op(u)] " 7 T T (2.5)

starting from the low energy scale/llmax defined byuy = g?(Lmax) = 4.61 to the higher scales
1/Lx, k=0,1,...,8 (with Lo = Lnay), One can obtain the rat@n{"% Fork > 6 contact can
be made with perturbation theory, in such a way that the RGI parametersaamnbauted from
egs. (1.5, 1.6) by using the 2-loagfunction and 3-loogB function.

In practice we calculatedp(u) at 6 different couplings in the range= 3.33...0.98, extrap-
olating to the continuum limit lattice results from resolutidnia = 6, 8 and 12 (see [1] for details
about the extrapolations). The change in scale by a factor 2 neededfudop is “easily” imple-
mented in the SF scheme as it amounts to doulllifegat fixed bare parameters (in other words
we used lattices with /a up to 24). We parameterize the results by the ansatz

op(u) = 1—In(2)dou+ p1t? + pou® , (2.6)

with free coefficientg; andp,. Inserting it in the recursion eq. (2.5), for the c&se 6, we obtain

3

(1)
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Using the result fok,a¢/\ from [13], we plot in figure 1 the running of the quark mass veysyaA.
In the plot we only include the errors from the coefficients the uncertainties o\ andM would
simply amount to a shift of the axes. The figure shows that in this case Ipatitur theory works

0.8 T
m(u)/M L SF scheme, N,=2
\
- — 2/3-1oop
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- ---1/2-loop
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Figure 1. The non—perturbative running afi. 2/3—loop refers to the 2—loop-function and 3—loo3—
function, analogously 1/2—loop.

surprisingly well down to rather small energies. This property is anyweagific of the quantity
and the scheme considered here. As an example, the non-pertufbédivetion in the SF scheme
shows larger deviations from perturbation theory at the lower end afjesereached here [13].

3. Thestrange quark mass

In order to apply the described procedure to the computation of the stopragk mass we
first need to calculate the factdg (9o) /Zp(9o, Lmax/@) for the bare couplings (i.e. lattice spacings)
used in large volume simulations. As we are going to use results from [4]eleant set of3
values is 5.2, 5.29 and 5.4. Since this region is covered by the resulk fgs) (and forZg°", see
figure 2) in [12], it remains to compu#(go, Lmax/@). At B = 5.2 the value is directly obtained by
a simulation at. /a = 6 while at the other couplings we had to interpolate the results from different
L/a (the appropriate one wouldn’t have been an integer). The numberobeeted in table 1.
Clearly nowZp andzy, refer to the chosen discretization, whereas the ratio in eq. (2.7) is salver

B Zp v

520 0.47876(47) 1.935(33)(24)
529 0.4936(34) 1.979(25)(24)
540 0.4974(33) 2.001(29)(25)

Table 1: Results forZp andZy for three coupling values.

As we work with two degenerate flavors, instead of the strange quarkwiegsve actually
compute isM,¢s associated with a kaon made from two degenerate quarks. We use dafafor
andmpg(k) from [4]. After extrapolatingo(k) to the chiral limit (i.e tok = k) we fit the product
ro(Kec)mps(K) as a function ok in order to determine;es defined such that

(ro(Ke)Mps(Krer))? = (romk)? = 1.5736, (3.1)
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where we have useg = 0.5 fm [15]. Finally we compute the PCAC masses at the bare parameters
B, Kref(B) with B =5.2, 5.29 and 5.4 in volumes of approximately 1.5 fm. This reduces cutoff
effects in the PCAC mass due to finite size [16]. The result for the RGltiyés

Mret = 72(3)(13) MeV (3.2)

the first error is statistical, the second is our estimate of cutoff effects eltdiy comparing the
result at the finest lattice spacing with that at the coarsest one. The numage (3.2) is consistent
with the quenched estimate of the same quantity [11]. Assuming a weak degenoleN; we
re-interpret our result as an estimate in the 3-flavor theory (this assungdticourse has to be
checked in the future), and relages to Mg through the lowest order chiral perturbation theory
formula [17]

M = (R + o) = (NI + Mg) Br, (3.3)

whereM = 1/2(My+ My), andBgrg is a constant of the chiral Lagrangian. For degenerate quarks
of masaVlef €q. (3.3) reads = 2MeiBrgi, Which impliesMyes = (I\7I +Ms) /2. Using the relation
Ms/M = 24.4(1.5) [7] we obtain

Ms~ 48/25Me; = Ms=138(5)(26) MeV . (3.4)

Higher order contributions from chiral perturbation theory are expetiiebe around 10% and
thus below the accuracy we have reached here. Eventually the resudeaonverted to thMS
scheme at the scale 2 GeV by employing the 4-logmd functions [18] forN; = 2. This yields
m¥S(2 GeV) = 97(22) MeV.

We give our conclusions discussing the collection of results in figure ZadByparing differ-
ent O@) improved regularizations we see that cutoff effects on the strang& quass at a lattice
spacing of 0L fm are around 20%. It is more difficult to assesshkheependence mainly because
only perturbative renormalization has been used in the 3-flavor caste@ther hand the compar-
ison of Ny = 2 determinations indicates that the use of perturbation theory for the relwatioen
constants underestimates the quark mass.
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