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1. Introduction

The use of anisotropic lattices in QCD allows for improved resolution in correlation function
decays of heavy particles with a minimal increase in computational workload. The anisotropic
lattice formulation has also proven to be particularly advantageous in finite temperature QCD [1].
However, the use of an anisotropic lattice introduces an extra parameter,ξ = as

at
(as andat being

the lattice spacings in the spatial and the temporal directions respectively), into our calculations.
As with other parameters the bare input values forξg (in the gluon action) andξq (in the quark
action) must be tuned correctly in order that a measurement of the output, renormalised, anisotropy
ξr yields consistent values for both. Furthermore, the use of dynamical rather than quenched gauge
configurations necessitates a simultaneous tuning of the two parametersξq andξg.

2. Simulation Details

The quark action used in this study is fine-Wilson coarse-Hamber-Wu [2] with stout-link
smearing [4]. This action has been designed for anisotropic lattices and has leading discretisa-
tion errors ofO(atMq) at tree-level.
The action is given bySQ = ψMψ, where
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1
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{(µrmat +

18s
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2ut
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s
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with µr = r = 1, s= 1
8 as in Ref.[2]

The tuning for the quenched case has previously been discussed in Ref. [2]. It was found that
the tuned point had small mass dependence for a large range of quark masses from below strange
to above charm.

The gauge action used in these simulations is the two-plaquette Symanzik-improved action [3]

SG =
β
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t
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}
. (2.2)

whereΩs andΩt are spatial and temporal plaquettes.ΩR
s andΩR

t are 2×1 rectangles in the(i, j)
and(i, t) planes respectively.Ω2t

s is constructed from two spatial plaquettes separated by a single
temporal link. This action hasO(a4

s,a
2
t ,αsa2

s) discretisation errors.
We used an 83×48 anisotropic lattice with lattice spacingas= 0.2fm, and set a target anisotropy

of 6. A set of 250 stout-link background gauge configurations was generated for each set of input
parameters (ξg,ξq). Ten independent Markov chains were used. Approximately 5000 cpu hours
were needed in order to generate each set of configurations. In order to increase statistics, 1000
bootstrapped sets of configurations were taken and analysis was done on these bootstrapped sets.
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# gauge configurations 250
Volume 83×48

as 0.2fm
Target Anisotropyξr = as/at 6

atmq -0.057

Table 1: Table of run parameters.

All measurements were made using point propagators. Calculation of the correlation functions
and analysis was negligible in comparison to the time needed to generate the gauge configurations
(∼O(30 hours)).

3. Tuning Method

Unlike the quenched case [2] it is not possible to simply fixξg and then tuneξq to a consistent
value, since changingξq will affect the measurement ofξg. Explicitly, changing the value ofξq

necessitates a regeneration of the background fields with the new value ofξq which in turn will
change the measured anisotropyξg of the background fields. The solution to this problem is a
simultaneous two-dimensional tuning procedure.

A linear dependence on the parametersξg and ξg was assumed for a small region. Three
initial sets of configurations were generated and the renormalised anisotropy was determined. To
determine the quark anisotropy for each simulation, the ground state energy,E0, was determined
for momenta withn2 = {0,1,2,3,4,5,6}, pn = 2πn

Las
, from a single exponentialχ2 minimisation fit

to correlation functions. These values were then used to generate an energy momentum dispersion
relation. The output quark anisotropy can be easily determined since it is inversely proportional to
the square root of the slope of the dispersion relation. A sample effective mass plot and dispersion
relation can be seen in Fig.1. We employed the sideways potential[5] method to tune the output
gluon anisotropy. In this method a coarse direction on the lattice is chosen to be time. There
are then both fine and coarse spatial directions. The static inter-quark potential is measured for
separation both in the coarse and fine directions. The demand that the two measurements yield the
same function of physical distance,Vs(x) = Vt( t

ξ
), determines the renormalised anisotropy.

Planes were defined for both output values ofξg and ξq i.e. valuesα,β ,γ were found to
satisfyξr = αξg + βξq + γ for the renormalised anisotropyξr measured for each input(ξq,ξg).
The intersection of these planes with the required output value gave an intersection point. As
bootstrapping was used it was necessary to ensure that each measurement ofξg andξq used to
compute an individual intersection point was computed from the same bootstrapped set. For the
case of more than three sets of configurations, a plane was defined using a constrained-χ2 fit. The
target anisotropy was 6. One important point however is that in order to restore Lorentz symmetry
the valuesξq andξg need only be consistent and the actual value they are tuned to is irrelevant.

4. Results

Figure2 shows the evolution of the tuning procedure. The first plot shows the intersection
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Figure 1: The left plot shows the effective mass for degenerate quark massatmq = −0.057 momentum
n2 = 4. The fit range is [14:20] with aχ2/Ndo f = 0.81. The right plot is a dispersion relation with a
χ2/Ndo f = 0.14. Both come from simulation parameters at point 1 on Fig.2.

Input Parameters Measured

Point ξg ξq ξq
Vs(x)
Vt( t

ξ
)

1 8.0 6.0 4.98± 0.06 0.991± 0.003

2 7.0 7.5 6.27±0.04 0.986± 0.003

3 8.0 7.5 5.18± 0.006 1.001±0.003

4 6.65 8.72 6.47±0.05 0.985±0.005

5 7.44 8.83 5.80± 0.05 0.995± 0.003

Table 2: Table of measured output anisotropies measured at each of the run points in plot (iv) in Fig.2.

points obtained for the first three sets of configurations. The initial sets of (ξg,ξq) had been esti-
mated to be close to the tuned values for the quenched case [2]. However the resulting scatterplot,(i)
in Fig. 2, from the points of intersection lay outside the original triangle of points. Due to the large
extrapolation, the error in central values was large. A fourth set of (ξq,ξg) was picked and aχ2

planar fit done for the four runs. This scatterplot is shown in (ii) Fig.2. The result of this was a
shifting of the central values and a large reduction in the error. A fifth set of configurations was
generated and the process repeated. This resulted in a further reduction of the error in the central
values. Figure3 shows histograms where the coordinates of the points in this final scatterplot, (iii)
Fig. 2 were binned in bins of size 0.02. An analysis of the 1000 bootstrapped points found median
values ofξq = 9.02+0.32

−0.20 andξg = 7.64+0.19
−0.13 using a 68% confidence level.

5. Conclusions and Outlook

After generating five sets of configurations we have narrowed down the search for a tuned point
to a small area. However, our choice of input parameters has meant that we are still extrapolating
to estimate the tuned point. Our initial choice of parameters were too closely grouped. A better
approach might have been to take a greater spread of points for our initial attempt at the tuning but
the assumption of linear behaviour ofξg andξq would have less validity over a larger region. This
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Figure 2: This figure shows the progression of the tuning procedure. (i) shows the scatterplot for a fit to the
first 3 sets of configurations. (ii) shows aχ2 fit for the first 4. (iii) shows aχ2 fit for 5 sets. (iv) right shows
all 3 scatterplots together. Each point on a scatterplot shows an estimate of a tuned point from different
bootstrapped samples.
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Figure 3: Histogram of coordinates for 5-run scatterplot from Figure (2). The plot on the left is the x-
coordinate,ξg, plot on the right is for the y-coordinateξq.

P
o

S
(L

A
T

2
0

0
5

)2
3

6

236 / 5



Tuning Anisotropies for dynamical gauge configurations Richie Morrin

procedure will now be repeated using all-to-all propagators [6] and lattices with longer temporal
extent which has been shown to improve determination of effective masses [7]. The final tuned
point here will be used as a reference point. It is expected that there will be a small quark mass
dependence on the tuned values for a large range of quark mass, similar to the quenched case [2].
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