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Recently Biskup et al. [Europhys. Lett. 60 (2002) 21] studied the behaviour of d-dimensional
finite-volume liquid-vapour systems at a fixed excess δN of particles above the ambient gas den-
sity. They identify a dimensionless parameter ∆(δN) and a universal constant ∆c(d) and show that
for ∆ < ∆c a droplet of the dense phase occurs while for ∆ > ∆c the excess is absorbed in the back-
ground. The fraction λ∆ of excess particles forming the droplet is given explicitly. Furthermore,
they state, that the same is true for solid-gas systems.
To verify these results, we have simulated the spin-1/2 Ising model on a square lattice at con-
stant magnetisation equivalent to a fixed particle excess in the lattice-gas picture. We mea-
sured the largest minority droplet, corresponding to the solid phase, at various system sizes
(L = 40, . . . ,640). Using analytic values for the spontaneous magnetisation m0, the suscepti-
bility χ and interfacial free energy τW for the infinite system, we were able to determine λ∆ in
very good agreement with the theoretical prediction.
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1. Introduction

One of the longstanding problems in statistical mechanics concerns the formation and disso-
lution of equilibrium droplets at a first-order phase transition. Interesting quantities in this context
are the size and the free energy of a “critical droplet” that needs to be formed before the decay
of the metastable state via homogeneous nucleation can start. In the analysis done so far it was
implicitly assumed that the size of the droplet is of the order of the system, which is not the case
when the droplet forms first [1, 2]. In this work, the region of system parameters that lead to the
formation/dissolution of a droplet is examined by means of Monte Carlo simulations. We follow
closely the theoretical ideas of Biskup et al. [3]; still, there are also different descriptions of the
same physical phenomena [2, 4, 5, 6].

In the remaining sections, after a brief introduction to the classical droplet theory, first the new
results of Biskup et al. [3] are summarized. Then our Monte Carlo measurements supporting the
theoretical results are presented, and finally some preliminary conclusions are drawn.

2. Theory

In the following the term “droplet” will be used in the sense of particles (or spins) that are
grouped together in a purely geometric way. One of the basic papers in this context is due to M. E.
Fisher [7] where he discusses "... a gas of particles interacting with repulsive cores and short-range
attractive forces ...". There, he mentions that "... the typical configuration at low densities and
temperatures will consist of essentially isolated clusters of one, two, three or more particles" while
"A sufficiently large cluster is just a small droplet of the liquid ..." and "Condensation in this picture
corresponds to the growth of a macroscopic droplet of the liquid." It should be emphasised that the
geometric definition of a cluster or droplet must not be confused with stochastic “Fortuin-Kasteleyn
clusters” or anything the like where it is not possible to identify a cluster by just “looking” at a spin
configuration.

All arguments in this section are based on the work of Fisher [7] and especially Biskup et al.
[3]. Due to the fact that the Monte Carlo simulations were done using the Ising model, the theory is
presented in terms of a lattice gas which mainly is a change of notation but does not alter the theory.
This is also supported by Biskup et al.’s presentation where the general results are additionally
given in the special context of the two-dimensional Ising model with Hamiltonian

H = −J ∑
〈i, j〉

σiσ j −h∑
i

σi , (2.1)

where σi = ±1 and 〈i, j〉 denotes a nearest-neighbour pair. Having no external field (h = 0) the
second term vanishes. When an up-spin (σi = 1) is treated as a particle and a down-spin (σi = −1)
is treated as a vacancy the system can be interpreted as a lattice gas of atoms.

Considering such a system, classical droplet theory assumes that there are two contributions to
the free energy. First, there can be local fluctuations and the probability to find a difference in the
magnetisation (excess in the magnetisation compared to M0 = m0V with V = L2) of δM = M−M0

can be expressed in terms of a Gaussian distribution as

exp
[

−(δM)2

2V χ

]

= exp
[

−(2m0vL)
2

2V χ

]

. (2.2)
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PSfrag replacements

m0 (V − vL)

−m0vL

Figure 1: Ising system of size V with a minority droplet of volume vL of negative spins surrounded by
positive spins with an volume (V − vL). Here we have assumed for simplicity that the total excess in mag-
netisation is concentrated in the droplet, i.e. vd = vL.

Here, m0 = m0(β ) is the spontaneous magnetisation and χ = χ(β ) the susceptibility, both quan-
tities at an inverse temperature β and in the thermodynamic limit. Assuming that the magneti-
sation in the background and inside a droplet is m0, the total magnetisation can be written as
M = −m0vL + m0(V − vL), where vL is the volume of the droplet and V the volume of the system
(see Fig. 1). Rearranging this expression for the difference in the magnetisation yields

δM = M−V m0 = −2vLm0 (2.3)

which was used in Eq. (2.2).
The second contribution to the free energy stems from an interface of a droplet of volume vL.

The cost to form it is given in two dimensions by [8]

exp [−τW
√

vL ] , (2.4)

where τW = τW(β ) is the interfacial free energy per unit volume of an ideal shaped droplet which
is also known as the free energy of a droplet of Wulff shape.

Comparing the exponents of Eq. (2.2) to (2.4) gives:

∆ =
(2m0vL)

2/(2V χ)

τW
√

vL
= 2

m2
0

χτW

v3/2
L
V

. (2.5)

With ∆ !
= 1 and Eq. (2.3), the difference in the magnetisation is

δM = θV 2/3 with θ = −
(

2χτW√
2m0

)2/3

. (2.6)

This means, when δM � θV 2/3 the droplet mechanism dominates, while the fluctuation mecha-
nism dominates for δM � θV 2/3. Biskup et al. [3] studied the crossover region δM ≈ θV 2/3.
By isoperimetric reasoning, they showed that in this range no droplets of intermediate size exist.
There is at most a single large droplet of size vd < vL with costs giving in Eq. (2.4) that absorbs
δMd of the excess of the magnetisation δM while the rest goes into the fluctuations of the back-
ground. This justifies the following Ansatz for the probability that the droplet contains the fraction
λ = δMd/δM of the excess in magnetisation:

exp
[

−τW
√

vd −
(δM−δMd)

2

2V χ

]

= exp



−τW

√

−δM
2m0

Φ∆(λ )



 , Φ∆(λ ) =
[√

λ +∆(1−λ )2
]

,

(2.7)
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(a) Evaporated system where a large number of
very small clusters exist (1 to 3 spins)

(b) Condensed system with a single large cluster
that has absorbed nearly all small clusters

Figure 2: Snapshots of a two-dimensional Ising lattice; white squares correspond to up-spins (atoms), while
black squares correspond to down-spins (vacancies).

where ∆ is defined in Eq. (2.5). Since τW
√

−δM/2m0 and ∆ are constants, the fraction of excess
that is most probable is obtained by minimising Φ∆(λ ). In two dimensions, the minimisation leads
to ∆c = (1/2)(3/2)3/2 ≈ 0.92. For values ∆ < ∆c the global minimum of Φ∆(λ ) is reached for
λ = 0, while for ∆ > ∆c it is located at a nontrivial value λ∆ > 0. At the transition point ∆ = ∆c,
the value is λc = 2/3. The solid line in Fig. 4 below shows the graph of λ∆. Its interpretation is
as follows: for ∆ < ∆c all of the excess is absorbed in the background fluctuations, then, at the
transition point ∆ = ∆c a value of 2/3 of the excess forms a droplet while the rest of the excess
remains as background fluctuations. For values ∆ > ∆c the droplet grows and absorbs most of the
background fluctuations. For an illustration with actual simulation data, see Fig. 2.

3. Simulations

The main goal of our work was to check the theoretical results presented in the last section.
In order to do so the fraction of the excess of magnetisation in the largest droplet was measured.
To this end a Monte Carlo simulation was set up with a fixed excess of magnetisation. To keep the
magnetisation during the simulation constant, a Metropolis update with Kawasaky dynamics was
chosen. After every sweep a cluster decomposition was performed (using the Hoshen-Kopelman
algorithm) and the volume of the largest cluster was measured. It is important to note that in the
present context the volume of the cluster includes overturned spins within the cluster (which was
implemented with a so-called “flood-fill” routine).

The simulations were performed at 38 different magnetisations chosen to have enough data
points in the vicinity of the transition. The temperature was set to T = 1.5 and altogether five
different square lattice sizes were taken into account (L = 40,80, . . . ,640). Every simulation took
20000 sweep for thermalisation and 200000 sweeps for measurements. To obtain the error bars,
10 independent simulations were run for each data point.

In order to get the correct scaling for the abscissa, ∆(M,M0,χ,τW) has to be calculated. For the
spontaneous magnetisation there exists Onsager’s famous analytic solution and for the free energy
of the Wulff droplet, Rottman and Wortis [9] were able to derive an analytic expression, while for
the susceptibility only series expansions are known; see, e.g., Enting, Guttmann and Jensen [10]
(but up to order 323!).
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Figure 3: Distribution of the magnetisation for the two-dimensional Ising model for different system sizes
L at the temperature T = 1.5. The cusp indicates the transition region. On the left side of the cusp (evapo-
rated system) a Gaussian peak is clearly visible, while on the right side of the cusp (condensed system) the
stretched exponential behaviour can be seen.

4. Results

Figure 3 shows the result of our “Multimagnetic” (Multicanonical for the magnetisation) simu-
lations. The distribution of the magnetisation shows at larger lattices sizes a cusp which divides the
evaporated and condensed region. Within the condensed region it has a Gaussian form according to
Eq. (2.2) while in the condensed region a stretched exponential behaviour is visible, cf. Eq. (2.4).
All data points in Fig. 4 are in the vicinity of this cusp. To get a feeling how the different configura-
tions actual look like, Figs. 2(a) and 2(b) show an evaporated and condensed system, respectively.
Both systems have the same magnetisation which was chosen to be the one at the transition point.
They represent extremes since during one simulation run these are the configurations where the
largest droplet is either minimal or maximal.

Figure 4 shows the results for the fractions λ∆ for various lattice sizes. The solid line represents
the analytical value (result of the minimisation of Eq. (2.7)). Clearly, for larger lattice sizes the
result of the simulations approach the theoretical values nicely. The jump from λ∆ ≈ 0 to λ∆ ≈ 2/3
at ∆c ≈ 0.92 confirms the theoretical prediction that at the evaporation/condensation transition only
2/3 of the excess of the magnetisation goes into the droplet.

The increase of λ∆ for ∆ → 0 can be explained by the fact, that the minimal cluster size is 1
(and not an arbitrarily small fraction) but the excess that can be fixed is smaller than 1.

5. Conclusion

Our Monte Carlo data clearly confirm the theoretical results of Biskup et al. [3]. The observed
finite-size scaling behaviour fits perfectly with their predictions. All simulations were performed in
thermal equilibrium and the abundance of droplets of intermediate size could be confirmed. At the
moment, additional simulations for different models are performed that should prove the universal
aspects of the theory.

252 / 5



P
o
S
(
L
A
T
2
0
0
5
)
2
5
2

Evaporation/Condensation of Ising Droplets Andreas Nußbaumer

P
o
S
(
L
A
T
2
0
0
5
)
2
5
2

L = 640
L = 320
L = 160
L = 80
L = 40
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Figure 4: Two-dimensional Ising model with nearest-neighbour interaction on a square lattice (L =

40,80, . . . ,640) at the temperature T = 1.5 ≈ 0.7Tc. The error bars are not plotted since their size is much
smaller than that of the data symbols.
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