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1. Introduction

In quantum field theory, the vacuum is filled with zero-poimery to which each mode
contributeshc/2. This picture raises the question, what dynamics wouldrgeni@ an interacting
classical field theory if each mode is initialized with enefgo/2. If we assume the phase of each
mode is randomly distributed, then Lorentz invariant datren functions arise upon averaging
over phases. Classical zero-point fluctuationfred masslesscalar and vector fields, the Lorentz
invariance thereof, and the effects of phase averaging: bagn considered before, most notably
by Boyer [1].

In [2], two of the present authors found critical and stronggling behavior in classical g*
theory that is strikingly similar to what is known about theéagtum field theory. They also devel-
oped a perturbative expansion of the classical theory icdindéinuum and found a loop expansion
very similar, but apparently not identical, to that of quantfield theory. Here we attempt a more
guantitative comparison of the classical and quantum ibgowhere both are defined on the lat-
tice. Our interest is not in the continuum limit of theseitattheories, or their critical behavior; we
wish to compare physical masses that are safely above thesangize of the systems, and safely
below the inverse lattice spacing. We focus on the loop ctimes to these masses.

2. Time Evolution

We study a classical ¢* theory in 1+1 dimensional Minkowski space on a lattice with a
action
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whereh = c=a= 1, andais the lattice spacing along thedirection. The integersand j label
the sites in tha andx directions, andj runs from 0 toN — 1. A periodic boundary condition is
imposed along the& direction, i.e. ¢(i,N) = ¢(i,0). The equations of motion are obtained from
the action and we adopt the leapfrog method, which is réseraind has second order accuracy, to
numerically integrate them.
To realize thehw/2 contribution of each mode to the zero-point energy, thlrgonfigura-
tion of interest to us is
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wherewf = 4sir?(rik/N) + p? is the lattice dispersion relatios is the lattice spacing along the
time direction, andd, is a phase uniformly distributed ov@d,2m). We leave the masg as a
parameter over which we iterate, since the physical masdviifferent from the bare mass.
The key point is that we use (2.2) to specify the initial cdiodis, @(0,j) = @(0,j) and
®(1/2,j) = @(1/2, j), but evolve forward in time witlA # 0 to investigate the dynamics of the in-
teracting theory. We obtain expectation values by repgastdrting from different sets of random
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Figure 1: Time (wavy) and space (smooth) correlators foe= 256, m% = 51/N2, A = 20/N?, andt; =
3N/4; for comparison we also display the significantly differgae correlators (black curves) with= mg,
to show the effect of the mass renormalization.

phases. We usg) to denote this averaging, which gives an interesting iritineof the emergence
of quantum effects if we compute the expectation values
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The r.h.s of the second line is just the real part of the Feynprapagator, and thus implies that
the mass shift induced from the classical interaction terexactly the same as the one-loop mass
correction in quantum field theory.

We calculate time, space, and zero-mode time correlatdisrespect to the final time slice
ts = ai¢, which are defined respectively as:
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Any of these can be used to extract mass, and we find3hat the least reliable, and th&, and
G; tend to agree well with each other. We concentrate on thedomelatorG;.

Fig. 1 demonstrates some important features of the classcalation: (i) the system evolves
towards the renormalized physical mass from the initialdition; (ii) the masses from the various
correlators agree. This is an indication that Lorentz sytmyrieeaking due to lattice effects is not
significant, and (iii) the physical mass can be determinduigh accuracy. To within a percent or
two all of the mass shift is due to the one-loop renormalirati
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3. A Precision M easurement of M ass

The one-Ioop graph on a lattice with discrete space androomtis time is given by
1 1

This mass renormalization effect can be used to define thfhompegap equation,

Meap= MG+ 3ATT (Myap). (3.2)

Self-consistent solutionsgy,p, of this equation effectively sum up graphs with chains ofldes,
where each bubble represeftsand allow the definition of a dimensionless coupling A /msap
The one-loop graph is the only (log) divergent graph in thioty, and so the gap equation provides
a useful representation of the physics for quite a largeoregf themcz,—)\ plane.

For the example in Fig. 1 we hage=0.2 andmsap: 1017/N?, to be compared with the mass
extracted from the simulation @f? = 100/N2. Given that there are two-loop corrections to the
gap mass that are not included in the one-loop gap equatiomyaal then is to decide whether the
difference between our extracted mass and the gap masssistem with the size of the two-loop
corrections from quantum field theory. At least at weak cimgplve have seen that the evolving
classical field quickly settles down to a stable configurati@ur prescription is to average over
twenty equally spaced values gf up to a final timety = 10N (a temporal extent 10 times the
spatial extent) to obtain a mass. We then average betwadémid® 20N to obtain a second mass.
If the second mass does not deviate significantly from the flien we accept the first mass as a
reliable extracted mass.

(3.1)

4. Comparison to Quantum Methods

In the lattice quantum field theory we impose a periodic bampdondition along the time
direction as well, and take; = a = 1 rather than 18§ = a =1 in the classical simulation. The
action is

s_ v (rp(i+1,j)2—cp(i,j))2+(rp< J+1)2 ”%(pz

(i,j). (4.1)
i,]=0

With this different lattice regularization the one-loogfssnergy graph and gap equation now be-
come

1 N/2-1 1
Me(m = Ra k7k/:Z_N/24sinz(nk/N) + 4sirf(rik /N) + 2 (4.2)
Egap I’T‘% +3AM E(mEgap) (4.3)

with the subscript E standing for Euclidean. The resultiafu@smgga, and ge will thus differ
from myap andg from our previous gap equation, and the behavior inrlﬁd\ plane of these two
theories will be different. The reason for the differencehiat Mg(m) — 1/ asm — 0 while
M(m) — 1/m. Previous Monte Carlo simulations of the quantum theorypi&] the value of the
critical coupling alg = 10.24 1, and that is where the physical mass is expected to vanish.

IThe critical coupling obtained from density matrix renofizetion group methods [4] is 9.98.
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In our quantum simulations we start with a hot start, and qudtating scheme is the heat-
bath algorithm followed by a Wolff step to reduce criticabwing down [5]. We monitor phys-
ical quantities such as the size of the Wolff clusters, th@oagc and the autocorrelation time
of various operators. The physical mass is obtained bydittie correlation functiorGg (i) =
<$ ZPI7}7lk/:O o', "o+ i’,k’)> to a cosh or a decaying exponential. We find that it gives physi
cal masses compatible with the gap equation and that theewrttssted at strong coupling is also
consistent with the expected critical behavior. The desa# the physical mass towards zero as
Oe is increased serves as one method for the determinatiore dbtlation of the critical line. For
another, the order paramet@r= g 31\, (i, j) and its histogram can be studied as the size of
the lattice is changed (see [3]).

5. The Two-L oop Effect

At leading perturbative order the difference between thgsigal mass and the gap mass is
determined by a single two-loop diagram, the “sunset” @dgiagrwhich is given by

N/2-1
Mae(mk) = =2 > G(p1+Kk, p2)G(d1,92)G(p1 + 1, P2+ G2), (5.1)
{P1,p2,01,02}=—N/2

whereG1(py, p2) = 4sirf(1mp; /N) + 4sir?(mp2/N) + P andk represents external momentum.
This calculation gives a correction to the 2-point functidmvhat corresponds to space-like external
momentum, since this is a Euclidean quantum theory, and wletfist M,(m, k) monotonically
increases als— 0. The classical theory however has Lorentzian signatmetsa we actually need
M, at the time-like on-shell momentum. We will uSgg(m,0) as an estimate for this. Our quantum
simulation data supporf3,g(m,0) as a good estimate of the difference between the physical and
gap masses for couplings as largegas 0.6. As a further check we have directly estimated the
single three-loop graph using the same technique as abmven(faller lattices) and found that it is
< g/2 times the size of the two-loop graph.

We therefore considergt improved two-loop gap equation of the form

MGap= M6+ [1 — &(Myap)|3M (Myap)A — 6M2e(Myap, 0)A 2. (5.2)

We have inserted a correction factor in theerm to account for possible lattice artifacts - it is
important to account for this because a small correctioh@itterm can compete in size with
the A2 term. This gap equation can be considered as a quantum nwbel tested against the
classical simulation data. Our strategy then is to use é&2)one parameter model for the extracted
physical massnynys from the classical simulation. We run the simulation for age of values of
mp andA that produce values farphys very close to a fixedngap and thereby determing(myap)
through a best fit. We use 5000 trajectories for each detetinimof a mass. For the four values
méap: (60,80,100,140)/N? we find &(myap) = (0.032 0.029,0.029,0.029).

To test the quantum model famynys we isolate they? dependence to get

92 = _{mgznhys_ ﬁ‘% - [l - E(mgap)]?)l_l (nbap)néapg}/en ZE(%an O) mgap (5-3)
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Figure 2: Plots showing thgy dependence of the r.h.s of (5.3) using the classical simoualaiThe graphs

are labelled byr®N? and the red solid line is thg? quantum field theory prediction. Each plot displays the
results of 10 different random number seeds, which give dicétion of the errors.

We then determine the r.h.s from the classical simulatiorafixed mysp, and for a range ofrg
andg that givempnys =~ Myap This is displayed in the plots of Fig. 2 where we see the tedid
quadratic dependence gnand compare to the superimposgdine of the quantum model. (The
points would lie along a straight line if there was groeffect.). These plots show that the results
of the classical simulation are very well described by tharmum model, where the coefficient of
the A2 term is given by the sunset diagram of quantum field theoris Erour main result.
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