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1. The A ¢* model on afuzzy sphere

In this work we deal with thduzzy spherdormulation as a method to discretise quantum
field theory, and we apply it in numerical simulations of tteeX3p* model. In that scheme, the
regularisation of the spatial part of the action takes pla@ngular momentum space, rather than
coordinate space, hence no space lattice is involved. Mmless we arrive at a finite set of degrees
of freedom, which allows us to study the model non-pertuvbbt

In particular we are going to regularise the continuum actio

S(¢) =/§dt Lo.t),
2
S(@.t) = /Sz[g¢<t7x>(%—ae) P10+ T P00+ A0 R, (@)

wheredQ = sin6dOdg, andS; has circumferencd. The scalar fieldp(t,x) depends on the
Euclidean timet and the space coordinateg8, @), with the constrainty® ; x* = R?. . are the
angular momentum operators, agtf = 52 | 2.

We first focus ors(¢,t), the spatial part of this action. As a discretisation weae@&’ by
a fuzzy sphere [1]: this means that the coordinageare replaced by the coordinate operators
X = %Li (i=1,2,3), wherel; are theSU(2) generators in thdl-dimensional irreducible rep-
resentation. These coordinate operators satisfy theredmisg? ; X2 = R?- 1L, which corresponds
to a matrix equation for a sphere. THeobey the commutation relation

[Xi, Xj] = i&ijk \/%_Xk - (1.2)
At finite N our coordinates describes a non-commutative geometngpthere turns fuzzy.

As in the continuum, where can usually be expressed as a polynomial in the coordixagtes
its fuzzy counterpart can be written as a polynomial in the coordinate operatorss fbrmula-
tion is obtained by replacinG®(S?), the algebra of smooth functions on the sphereMayy, a
sequence of matrix algebras of dimensnwhere all positive integer values bf are permitted
[2]. Thus the scalar field is represented by a Hermitian marof dimensionN (note thatp € R
implies the Hermiticity of the matrixp).

The differential operatorsZ - are replaced byL;,-], and the integral ove® is converted to
the trace. The standard basis for functions on the sphereven gy the spherical harmoni¢sim }

— is replaced by the polarisation tensor baB?@,]}, see for instance Ref. [3]. Let us summarise
this set of substitutions:

% €C(SP) — X eMaty , @(X)eC”(S) — decMaty, (1.3)
Lo — L8] 2 P T (] (1.9
/52 0(x)dQ — %’TTr(q:) . (L.5)

Rotations on the fuzzy sphere are performed by using an ekthef the N dimensional
unitary irreducible representation 8fJ(2). A general elemenit) of this representation has the

263 /2



Field Theory Simulations on a Fuzzy Sphere - an Alternatiteé Lattice Julieta Medina

formU =exp(iwL;), with wy € R. The coordinate operators are then rotateld 4t = =RjjXj,R€E
SQ(3), and the field transforms @ — & =U®U T,
Implementing the substitutions (1.3)-(1.5) in the actibri}, we obtain

s = T Zoq) (%22 - aﬁ) o)+ o2+ 2ot (1.6)

This discretisation (at finit®) preserves the exact rotational symmetry of the continuurdeh
since any rotation on the sphere is allowed, and action (&réains invariant.

To discretise the time direction we take a sefNpfequidistant pointsT = N:At. This yields
the fully regularised action

" B 2
4nR2At ZiT [2R2 () 220(t) + 1<d>(t+At) q’(t)> +ﬁ¢2(t)+%¢4(t) . (1.7)

2 At 2

We are interested in the limifd — o andN; — o0, and for our simulations we fixeld = N;.
One configurationb corresponds to a set of matricg®(t)}, fort = At, ... N/At.
The formal expression for the Fourier decomposition of thklfieads

0 | 2
2mkt\ _ 4piR
o)=5 Y Y cmK) exp<|—> Yim = p Z IO(—I— r(Y, ()
I=0 m=—1 keZ Nt
(1.8)
In particular the temporal zero mode ®fis given by
_ 1
D= N2 z ®(t) = cooYoo + z CimYim+ - (1.9)
wheregy, ;= ﬁ St Cim(t). Our order parameters are based on the coefficgqts
1
$o:=lcool,  P1:=,| > lcml®, (1.10)
m=-1
and the corresponding susceptibilities. We deﬂiﬁ,gas the norm of the fiele,
2 . o 4m D2) — 62+ b2
o ._Z|c|m| = NTr( )=¢5+di+... (1.12)
m

2. Numerical results

A numerical study of the 2d version of this model was preskimeRef. [4]. However, as
an important qualitative difference, in that case the méicould be absorbed in the couplings,
whereas here it takes the réle of an independent parameter.

We also recall that our formulation corresponds to a honfoatative space on the regularised
level. In analogy to previous studies of the non-commugatiy* model in flat spaces [5], and to
the 2dA ¢* on a fuzzy sphere [4], we observed three phases:

| : The disordered phase, characterisedpBy ~ 0, ¢o ~ 0, $1 ~0, ...
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e |l : The uniform order, characterised lzkg” ~ ¢§ >0,¢:~0,...
e Il : The non-uniform order, e.gp3, >0, po ~ 0; ¢1 >0, po~O0, ...

Figures 1 to 3 give an overview of our numerical results.

The triple point()\T,m%) is fixed by the intersection of the transition curdesl| andl — 11 .
We focus on its behaviour since it determines which phasegvseuunder different limits. The
emerging triple point expression reads

(AtAr,A2MR) = ((419& 30) (%) y,—(lZ?i 1) (%)zﬂ/) : (2.1)

where our numerical results are consistent with y = 0.64+0.2.

(12 m?
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Figure 1: Examples for the phase transition curves I-Il: On the Iefn"weABt =4 and varyN. On the right
we fix N =12 and and vary the rati§. In both cases the transition lines stabilise for suitabbled axes.
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Figure 2: Examples for the phase transition curves I-11l: On the ledtfix % = 8 and varyN. On the right
we fix N = 16 and and vary the rati§. Also here the transition lines stabilise for suitably sdadxes.

3. Behaviour of the model under different limits

For the temporal part of the model we f¥t= -, k € (0,1), hence the time extensioh
amounts tdN*—¥ — oo,

e Regarding the spatial part of the model, the non-commdfigyal plane IimitRé can be
accessed iR = N2, for © fixed andR, N — oo [6].
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Figure 3: The phase diagram fd¥ = 16, KRt = 4. We show linear fits for both transition curves. The
extrapolation of those lines allow us to identify the triplaint.

o For thecommutative flat limjtR2, we takeR 0 Nz(1=€) with & € (0,1), andN — oo,
e Thecommutative sphere limitrises wheRis fixed andN — o, sinceC*(S?) is recovered.

We summarise all cases by settiRg= N? with 3 = %(1— €), € €[0,1]. Then eq. (2.1) takes the
form
(Ar,m?) = (41.91NK(1’2V)’V(1+23),—12.7N2K’3V(3+K)) . (3.1)

Although the error ory resp.y is sizable, the exponent ik in eq. (3.1) seems to be clearly
negative. Thereforar — 0 asN — oo, which indicates the disappearance of the uniform order
phase.

As a particular case we consider—= % with the tri-critical action

z Tr[ (t).220 (t) + 27N28 [D(t + At) — D(t))]
25N4"q>2() —41N9"NV<3*%>¢4(t) . (3.2)

For largeN the leading contribution to eq. (3.2) is the temporal kinétrm, while the contribution
from the fuzzy kinetic term is negligible. Hence the unifoamder phase disappears in this limit,
which leads to a simplified model that was analysed in Refs. [7

Finally we compare our results to those obtained in the lask\guoted in Ref. [5]. If we set
At =1 andR= N, we arrive at a similar behaviour of the triple point, nam@?Ar,N>mg ) ~
const The suitable action is given by eq. (3.2)f&at= 1/2. Again the leading contribution is due
to the temporal kinetic term.

4. Conclusions

We presented a numerical study of thé@* model on the 3 dimensional Euclidean space
where we combined two schemes of discretisation. As inedlatodels studied previously [4, 5],
we identified the existence of three phases, one of which ksiawn in theA ¢* model in the
continuous commutative space. The fate of these phases venitus limits will be discussed in
more detail in Ref. [8].

At this point, we just repeat that the triple point scalesdmzn the limitN — o, Hence this
simple model cannot capture the Ising universality claghislimit. This is not surprising, given
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the perturbative results of Refs. [2] and [6], where it waseskied (in the commutative limit) that
though the non-planar diagrams have the same divergeride-ato as the planar diagrams, the
difference of the two diagrams is finite and non-local.

In any case, to maintain the uniform phase, it is necessamiiforce the fuzzy kinetic term.
This is achieved most simply by adding a higher derivativetigoution which will guarantee that
all diagrams are convergent in the lafgdimit. For the current model this would correspond to
adding a termb(.£2)2d/(A2R?) inside the trace in eq. (1.7) (whefeis a momentum cutoff). By
an appropriate scaling &f it should be possible to send the triple point to infinityNas- .

This pilot study reveals that the fuzzy sphere formulatioedlindeed enable numerical sim-
ulations without the requirement of a spatial lattice. e as a discretisation scheme is that it
preserves certain symmetries exactly, which are explibitbken on the lattice. We hope for that
virtue to become powerful in particular in supersymmetriodals.
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