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Schrödinger functional we show that in general not only the bare mass has to be tuned to achieve

chiral symmetry in the continuum, but also coupling constants multiplying chirally non-invariant

four fermion terms. The strategy for fixing the parameters ofthe theory is explained in pertur-

bation theory and the results of a first order calculation arepresented. The results are shown to

agree with the infinite flavour limit.
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1. Introduction

Theories of self-coupled fermions in two dimensions may show interesting features like as-
ymptotic freedom and chiral symmetry [1]. A model with these properties provides a lab for all
sorts of questions raised in the context of lattice formulations of chiral fermions in four dimen-
sions. In principle, the universality of different fermion discretizations can be investigated, new
ideas can be tested in a controlled environment or “established” concepts can be challenged with
high precision Monte Carlo (MC) data.

Many of the perturbative and nonperturbative properties of the continuum chiral Gross-Neveu
model (CGN) have been calculated, see e.g. [2] and [3]. The properties of chiral symmetry with
Wilson fermions have been studied in the limit of an infinite number of flavours [4, 5]. In this work
we use lattice perturbation theory (PT) to compute the critical mass and other parameters of the
lattice action with Wilson fermions.

2. Self-coupled fermions

Rather than just stating an action associated with CGN we start with a general action contain-
ing all possible terms that self-couple the fermions. Their number will be reduced by symmetries
and interdependence. In this way we are sure to include all interaction termsthat might be impor-
tant for renormalisation.

In two dimensions fermion fieldsψ, ψ have mass dimension 1/2. Therefore the couplings
multiplying four fermion interactions (4FI) are dimensionless and relevant. Inthe continuum
euclidean action forN flavours of Dirac fermions1

S =
∫

dx2
{

ψαi

(
(γµ)αβ ∂µ +mδαβ

)
ψβ i +Ci jlk

αβγδ ψαi ψβ j ψγk ψδ l

}
(2.1)

the 4FI consist of four Dirac spinors with Dirac (Greek lettersα ,β , . . . ) and flavour (Latin letters
i, j, . . . ) indices contracted by the tensorC.

Imposing now a set of symmetries: flavour U(N) symmetry, Euclidean invariance, parity and
using the properties ofγ-matrices in two dimensions (γµγ5 = iεµνγν ) one finds thatC can be written
as a superposition of 6 terms characterized by three different Dirac structures and by two different
flavour structures:2

OSS = (ψψ)2 O′
SS = ∑a(ψλ aψ)2

OPP = (ψiγ5ψ)2 O′
PP = ∑a(ψiγ5λ aψ)2

OVV = ∑µ(ψγµψ)2 O′
VV = ∑µ,a(ψγµλ aψ)2

(2.2)

In the flavour non-singlet terms on the right hand side the sum is over theN2−1 generatorsλ a of
SU(N). But these terms are not all independent. Fierz transformations (FT) allowto interchange
products of Dirac spinor bilinears like the terms in (2.2). In two dimensions the FT yield three
equations like

OSS −OPP = − 1
N OVV − 1

2O′
VV . (2.3)

1If not stated otherwise, repeated small letter indices are summed over.
2The contraction of Dirac and flavour indices is obvious, hence they are suppressed.
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Taking these interdependencies into account there arethree independent 4FI and hencethree di-
mensionless couplings3.

Chiral symmetry is not considered at this stage, because we want to study the theory on the
lattice with the Wilson discretization, which breaks chiral symmetry explicitly. One can choose
any three terms from (2.2). In view of nonperturbative MC calculations wechoose the three terms
with flavour singlet bilinears only. To be specific, on a cubic lattice with extension T ×L we study
the theory with the euclidean action

S = a2∑
x

{
ψ(DW +m0)ψ −

1
2

(
g2

S OSS +g2
P OPP +g2

V OVV
)}

, (2.4)

whereDW is the Wilson-Dirac operator anda the lattice spacing.

3. Chiral Ward-Takahashi identity

The PCAC (partially conserved axial current) relation of the theory obtained in the naive con-
tinuum limit of (2.4) takes the usual form, but is modified by a term originating from the scalar and
pseudo scalar 4FI

〈
O(y)∂µAµ(x)

〉
=

〈
O(y)2m0 P(x)

〉
−

〈
O(y)(g2

S −g2
P)/2P(x)S(x)

〉
, x 6= y , (3.1)

where
Aµ(x) = ψ(x)γµγ5ψ(x) , P(x) = ψ(x)γ5ψ(x) , S(x) = ψ(x)ψ(x) . (3.2)

The vector 4FI is chirally invariant on its own. Note that an U(1) chiral transformation was used
to derive this and therefore only the flavour singlet current and densities appear. Imposing chiral
symmetry in the continuum theory the mass has to vanishm0 = 0 and the couplings of the scalar and
the pseudo scalar 4FI have to be equalg2

P = g2
S. The PCAC relation then turns into the conservation

of the axial current. The resulting action with the interaction−1
2

(
g2

S (OSS +OPP)+g2
V OVV

)
is

what in the literature is called the CGN4.
However, at finite lattice spacing chiral symmetry is explicitly broken by the Wilson term, the

mass is not protected against additive renormalisation andg2
P = g2

S is no longer protected. The
right hand side of (3.1) becomes a mess due to operator mixing. To achieve chiral symmetry in the
continuum limit means for properly normalized fields and axial current

〈
O(y) ∂̃µ

(
Aµ

)
R (x)

〉
= O(a) , (3.3)

where∂̃µ is a symmetric lattice difference operator. That is in an asymptotic expansion ofcorrela-
tion functions

〈
O(y) ∂̃µ

(
Aµ

)
R (x)

〉
in the lattice spacing the zeroth order vanishes. This condition

is used to fix the parameters of the action (2.4) in MC simulations [6] and in PT.

4. Correlation functions

We define correlation functions in the Schödinger functional (SF) setup [7] in order to uti-
lize (3.3) [8]. In this finite size scheme the fermion fields obey Dirichlet boundary conditions in

3For N = 1 the number of degrees of freedom allow only for one local interaction term. Here we considerN > 1.
4In most largeN studies the vector term is not present.
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Figure 1: Tree level diagrams forfX .

time and generalized periodic boundary conditions with a phase shift parametrized by an angleθ
in space

ψ(x+L) = eiθ ψ(x) , ψ(x+L) = e−iθ ψ(x) , θ ∈ [0,2π) . (4.1)

The Dirichlet boundary conditions in time may give rise to new counter terms defined on the bound-
ary, in the sense that the associated bare coefficients are needed to absorb infinites on the way to
the continuum limit. Relevant operators or composite fields living at the boundary are those which
have mass dimension one or less. Thus objects likeψΓψ with Γ = {1,γ0,γ1,γ5} can appear. But
all these terms either vanish because they violate parity or for the boundaryfields that we employ.
Thus no additional boundary counter terms have to be considered.

The correlation functions

fX(x0) = −
a2

2N f
∑

y1,z1

〈
ψ(x)ΓX ψ(x) ζ (y1)γ5 ζ (z1)

〉
, ΓA = γ0γ5 , ΓP = γ5 , (4.2)

to be considered are correlators of a zero momentum pseudo scalar boundary state built from the
boundary fieldsζ , ζ and insertions of the time component of the axial current (fA) and the pseudo
scalar density (fP) respectively. For details on the definition of the generating functional and its
perturbative expansion we refer the reader to a forthcoming publication [9].

5. First order renormalization

In order to calculate the parameters that ensure (3.3) in first order of PT, the correlation func-
tion (4.2) has to be expanded to this order

fX(x0) = f (0)
X (x0)+g2

S f (1,S)
X (x0)+g2

P f (1,P)
X (x0)+g2

V f (1,V )
X (x0)+O(g4) , (5.1)

where we assume all three couplings to be small and comparable to some smallg2, i.e.

g2
i = ci g2 , and ci = O(1) , i = S,P,V . (5.2)

The tree level amplitudef (0)
X is the sum of the two diagrams sketched in Fig. 1. In these diagrams

the dotted lines represent the time slicesx0 = 0 andx0 = T . Plain lines are used for the fermion
propagator and the small open circle in the middle symbolises the insertion.

The first order amplitudef (1)
X = cS f (1,S)

X + cP f (1,P)
X (x0) + cV f (1,V )

X is a sum of three contri-
butions from the three 4FI. Each such contribution is itself a sum of 10 diagrams. Due to the
γ5-hermiticity of the Wilson Dirac operator, and thus the fermion propagator, thediagrams 1a and
1b and also 2a and 2b in Fig. 2 are equal. In these diagrams the small filled circles (dots) represent
the 4FI. The diagrams in the lower row of Fig. 2 are very similar to the respective ones in the upper
row but have two separated dots. Because the 4FI consists of two Dirac spinor bilinears, there are
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Figure 2: First order diagrams forfX .

always two similar but distinct contractions: either the flavour and Dirac indices of the four spinors
are contracted collectively or the two bilinears are contracted separately.One single dot refers to
the former and two separated dots to the latter possibility.

We define now the renormalised correlation function( fA(x0))R andhA(θ ,x0/L) as dimension-
less quantities on a lattice with fixed ratioT/L

( fA(x0))R = ZA Z2
ζ fA(x0) and hA(θ ,x0/L) = L∂̃0 ( fA(x0))R , (5.3)

where we introduced normalization factors for the axial current and the boundary fields

ZA = 1+g2 Z(1)
A +O(g4) , Zζ = 1+g2 Z(1)

ζ +O(g4) . (5.4)

Eq. (3.3) means in terms of these functions

hA(θ ,x0/L) = O(a/L) , ∀θ ,x0/L , at am0 = amc . (5.5)

Employing this condition at tree level one finds that the critical massmc vanishes, i.e.amc = O(g2).
Here we determine the first order coefficient in

amc = am(1)
c g2 +O(g4) . (5.6)

Using expansions (5.1) and (5.6) in (5.3) gives

hA = h0 +g2
{

h1 +am(1)
c h2 +

(
Z(1)

A +2Z(1)
ζ

)
h0

}
+O(g4) , (5.7)

with

h0 = L∂̃0 f (0)
A (x0) , h1 = L∂̃0 f (1)

A (x0) , h2 =
∂

∂am0
h0 , (5.8)

all defined atam0 = 0. The tree level amplitudeh0 turns out to be O(a2), whereash2 diverges
linearly in a. Therefore (5.5) amounts to

am(1)
c = −h1/h2 +O(a2) . (5.9)

Since the amplitudeh1, as f (1)
A , is linear in the coefficientsci introduced in (5.2) the finite and

the O(a) part of−h1/h2 yield two linear equations for each pair ofθ and x0/L. But the limit
a → 0, defining the critical mass, turns out to be independent ofθ andx0/L giving a single relation
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between the critical mass and the coefficients. The O(a) part has to vanish, thus demandingcS = cP.
In terms of the coupling constants the result is

amc = −0.7698004(1)×
(
(2N −1)/2g2

S +g2
P/2−g2

V

)
+O(g4) , (5.10)

g2
P/g2

S = 1+O(g2) . (5.11)

To compare with the largeN result of [4] we rescaleg2
i → g2

i /N and take theN → ∞ limit in (5.10)

amc = −0.7698004(1)×g2
S . (5.12)

This is the full largeN result. The authors neglect the vector 4FI from the beginning, but their
result is not changed if it is taken into account. In the largeN limit g2

P is a nontrivial function ofg2
S

which is reproduced by our result at first order.

6. Conclusion and Outlook

Self-coupled fermions in two dimensions with U(N) flavour and continuous chiral U(1) sym-
metry are asymptotically free in the largeN limit and in perturbation theory. We establish this the-
ory on the lattice with the Wilson discretization. In general there are three dimensionless coupling
constants and the bare mass parameter due to the explicitly broken chiral symmetry. Continuum
Ward-Takahashi identities are used to enforce chiral symmetry in the continuum limit of the lattice
theory fixing the parameters of the action. At first order in perturbation theory, when all couplings
are small, we determine the critical mass and the ratio of the pseudo scalar and the scalar coupling.
The vector coupling is not fixed at this order. It is not needed for the renormalisation of the ratio. It
appears in the expansion of the critical mass which is not seen at largeN. Nevertheless our result
contains the full largeN critical mass and also the ratio of the couplings is correctly reproduced.

A next to leading order calculation is almost finished and covered in a forthcoming publication
[9]. With this result we will be in the position to calculate a renormalised coupling and thus a step
scaling function in the controlled environment of Wilson fermions. Then a direct comparison with
other fermion actions like Ginsparg-Wilson and staggered is possible and willbe done.

Acknowledgment We would like to thank Rainer Sommer and Francesco Knechtli for helpful
discussions and Ulli Wolff for reading the manuscript.
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