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1. Introduction

The Monte-Carlo simulation of lattice QCD with dynamicatrféons is rather expensive.
Therefore ideas and concepts are sometimes tested in loandiomal toy-models which are com-
paratively cheap and often provide interesting insightso ®f these toy models are the two dimen-
sional Gross-Neveu and the chiral Gross-Neveu model. Theyemormalizable, asymptotically
free and have a rich particle spectrum. The masses of thielparare generated dynamically. The
chiral model is invariant under axibl(1) transformations, the standard Gross-Neveu model only
under a discret&,-subgroup. Both models were treated in the laxgapproximation [[1[]2]3] and
in perturbation theory[]4] 5] in the past and as both modeisreegrable also some exact results
are available[J6[]7]. Different discretizations were useditulate the discrete mod¢] [8, 9]. To
our knowledge the chiral model has so far only been simulati¢hd staggered fermiong [[L0] in
3d. Here we present first results of simulations with Wilsemrfions with which the restoration of
chiral symmetry requires more cafe][11].

2. The chiral Gross-Neveu model

The chiral Gross-Neveu model descrithé$lavors of self-interacting fermions in two dimen-
sions. The standard way of writing its euclidian action is
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where the summations in flavor space are left implicit. In tdirensions such quartic interaction
terms are renormalizable. Moreover the model is asymtibtidree which makes it in a sense
similar to QCD.

An equivalent action is given by

o2+ N2 AHAH} . 2.2)
205 29
Here real auxiliary fieldsr, N andA,, have been introduced which are additional bosonic integra-
tion variables in the path integral. If these are integratatithe action[(2]1) is recovered, hence
both formulations are equivalent on the level of the gemagdtinctionals for fermionic correlation
functions. The language with auxiliary fields is better as@@e to numerical simulations because

the fermionic fields enter bilinearly and can be integrated o
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3. Lattice formulation with Wilson fermions

On the lattice the action of the model with Wilson fermionsasthe form

S=a? {Lﬁ[D +mo+ o +iysM+ Ay -+ 02+ n2+A“A“} (3.1)
AL * 2 22 2% | '
The Wilson operator is given by
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with the forward and backward lattice differences

09 = 2 [0/ et i) — ¥ (33)
w09 = 3 [w60 - e 2y p)] (3.4)

We incorporate a phase factor into the definition which iswedent to a particular choice of bound-
ary conditions. For instanc@ = 0 corresponds to periodic afl= 17 to antiperiodic boundaries.
The fermionic matrixD = Dy + Mg+ 0 + iy + A is neither hermitian nor anti-hermitian and
unlike in QCD not evern-hermitian. For periodic and antiperiodic boundaries hawét is real
(in a Majorana representation of tirgmatrices).

We simulate the model with a Hybrid Monte-Carlo algoritir@][1For this we introduce one
complex pseudo fermion fielg for each two flavors in order to represent the fermionic deter
nant as well as for each auxiliary field a conjugate momenteid.filn the simulation of the two
flavor theory most processor time is used for the integratioihe equations of motion (leap frog
integrator) and in particular in the solution of linear gyss(DD")x = ¢ which is done with the
conjugate gradient method.

4. The Schrodinger functional

In computer simulations finite volume is unavoidable. We egploit it by using finite volume
renormalization schemes, a particularly successful or@G0D being the Schrédinger functional
scheme [[13[ 34]. We simulate the chiral Gross-Neveu modalfinite box with spatial exterit
and temporal extent. In the spatial dimension we apply (anti-)periodic bougydasnditions and
in the temporal one we have Dirichlet boundaries

POx)P-=p(x1)  Pg(0,x)=p(x1)
P(T,x1)Pr = p'(x1) P_y(T,x1) = p'(xa), (4.1)

whereP; = (14 yp)/2. Such boundary conditions may in principle cause new gemees, which
would require the introduction of boundary-countertermt® ithe action, but no such terms are
necessary in our casge J15].

An observable is a polynomial in the functional derivativéith respect to sources, n and
boundary fields

_ o o
= o o)
Ca)=- op(x1) <) op(x1) (4-3)
~1 _ 0 / _ 0
¢'(xa) " 30 0) {'(x) = 5 0a)’ (4.4)

which acts on the generating functional.
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5. Chirally symmetric continuum limit

In the formal continuum model a Ward identity associatedhhe axiall (1) symmetry can

be derived
7]

where? is some arbitrary operator.

In our lattice model chiral symmetry is broken explicitly tye Wilson term and we have to
introduce a bare masg, # 0 and non-degenerate couplings # g% into the action [(3]1) which
increases the number of bare parameters to fmgr:gg, g3 andg’. Let us assume for a moment
that we can define two different renormalized finite volumsestiableg); andg, and that we know
two operatorg’; and¢s, which make[(5]1) vanish only due to chiral symmetry and nietith some
other symmetry of the action (e.g. parity or charge conjogat We want to take a continuum limit
of some other observables e.g. the step-scaling functibgs andg, at a fixed physical size of
the lattice. We then need to tune the four bare parameteesderies of increasingly larger lattices
in such a way thatj; andg, are kept at some fixed values and at the same (5.1) is edpos
for both operatorg’; and &». The continuum-extrapolated values of the observableddniog
universal predictions of the chirally invariant theory.

At first sight the tuning of four parameters seems imprabteaven in a two dimensional
system. But there is a formal argumentation in the contin{fLghthat might help us a lot. There
it is established that the combinatigd — g2/N does not renormalize and hence can be set to an
arbitrary constant

2
o2 = const+ gﬁs (5.2)

Although we do not see how the formal argumentation can bedegeed on the lattice one may
hope that[(5]2) holds also there up to cutoff effects. Fotuhiag ofge andmy we can use largdt
results [R] and perturbation theorly J15] as a first guess.

6. Observables

In our simulations we measure the following correlationdiioms

ad —

fax0) = —— 5 (PXwww () (y1)wl(a)) (6.1)
X1,¥1,21
3 —
fe(0) =~ 5 (BO)WYMIE (1)l (@) 6.2)
2 1,Y1,21 -
f, = ~NL ({'(y1){ (1)) (6.3)
Y1.Y1
4 _ —
=y Y (OB @B )eAY () - (6.4)
Y1,21,Y1,Z,

1we believe that this is the reason why the vector-vectoractéon term in the action is left out in most larfe-
calculations.
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Figure 1: Left: The quotienim versus the bare couplir@ on a lattice of sizd x T = 12x 13. The bare

mass was set toy = mél) +0.2. The other couplings weig = 10gy = gs. Right: The second derivative
of the logarithm of the Schrédinger functional with respiecé versus the lattice size. The couplings and
the bare mass are kept constantat= 0.023,9s=gp = gv = 0.1.

The quotient N
~ dofalx0)

m(*0) 2fp(X0)
is independent ofy up to lattice artifacts and vanishes when the Ward iderfiif¥)(is satisfied. On
the left hand side of figurd 1 this quotient is plotted and careg@ with perturbation theory. The
bare mass was set @ = m((;1> +0.2, wherem((;” is the 1-loop result for the critical mass.

We can usd, and f4 to define a finite volume running coupling

(6.5)

f

gt 7

o° O (fa)r— fﬁo)a (fa)r=27fsa= (6.6)
where f2(0) and ff)) are the tree-level values. The last equality holds if we meadize f, by

requiring that it takes its tree-level value

(fo)r=22f=£,°. (6.7)

Other renormalized observables can be obtained from digggaof the logarithm of the
Schrédinger-Functional with respect to the angle

aelogz‘ez ~-0 (6.8)
2 _33 ~
797 = (L5 3 Tl wlweer 1))
o T 3 A
+ (G2 2P Wt DL Wvy+ )
Xy
- - oo DEL+ -1} ) 69)
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The first derivative vanishes due to the parity invariancthefaction. The second one is finite and
its magnitude strongly depends on the “physical” spatifdw of the system. The right hand side
of figure[1 shows how this observable approaches zero whelattiee size grows at fixed bare
parameters.

At the moment we are still in the process of testing whetheseh(or other) observables will
allow us to define a line of constant physics accurately enoug

7. Conclusions

To recover a chirally invariant Gross-Neveu theory fromtida model with Wilson fermions
requires the careful tuning of four bare parameters. We mx@duced and tested several observ-
ables that can be used to define a “line of constant physidsst $imulation results are encour-
aging, but whether some continuum extrapolated quantitybeacalculated accurately enough to
justify the effort in this model remains to be investigated.
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