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We study the lattice model for the supersymmetric Yang-Mills theory in two dimensions pro-

posed by Cohen, Kaplan, Katz, and Unsal. We re-examine the formal proof for the absence of

susy breaking counter terms as well as the stability of the vacuum by an explicit perturbative cal-

culation for the case ofU(2) gauge group. Introducing fermion masses and treating the bosonic

zero momentum mode nonperturbatively, we avoid the infra-red divergences in the perturbative

calculation. As a result, we find that there appear mass counter terms for finite volume which

vanish in the infinite volume limit so that the theory needs no fine-tuning.
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1. Introduction

Cohen-Kaplan-Katz-Unsal(CKKU) [1],[2] model is one of the promising formulations of the
supersymmetric gauge theories without fine-tuning [3]. Their model is constructed from matrix
model by usingorbifolding [4] and deconstruction[5], where the lattice spacing is dynamically
obtained as the inverse vacuum expectation value of the scalar degrees of freedom in the matrix
mode.

One possible problem in CKKU model is that the extended supersymmetry has flat directions
for the scalar so that the lattice structure from the deconstruction suffers from the instability due
to the quantum fluctuations of the scalar zero momentum modes. To suppress the divergence in
the flat directions, soft susy-breaking terms for the scalar fields are introduced. Since such terms
break the supersymmetry and causes the infra-red divergence of fermion zero modes, the original
discussion of the renormalization based on exact supersymmetry on the lattice has to be modified
by including the breaking terms. It was still unclear whether fine-tuning is needed or not

2. Investigation method for fine-tuning problem

2.1 The values which we have to calculate

It is therefore important to re-examine the renormalization at 1-loop level by explicit calcula-
tions in order to see whether this theory really needs fine-tuning or not.

Since there is no exact supersymmetry in the modified action, we do not exploit the superfield
formalism here, so that operatorsO in this section do not contain the grassman coordinateθ any
more as opposed to the operatorsO in the previous section. Radiative corrections induce the
operatorO of the following structure into the action

δS=
1

g2
2

Tr
∫

d2zCOO. (2.1)

Relevant or marginal operators (O) whose canonical dimensionM[O] = p at thel -loop correction
must satisfy

p≤ 4−2l (2.2)

At 1-loop level, relevant or marginal operators with dimensions0 ≤ p ≤ 2 can arise. At 2-loop
level, relevant operators with the dimensionp = 0 can arise. Beyond 2-loop, there is no relevant or
marginal counter term. Since the operator with the dimensionp = 0 is the cosmological constant,
it does not play any serious role in fine-tuning problems.

Let us now focus on the 1-loop relevant or marginal counter-terms. Since bosonic fields have
dimension 1 and fermionic fields have dimension3

2, the candidates for such operators are bosonic
1-point and 2-point functions. Although fermionic 1-point functions are possible from dimension
counting, they are forbidden by Grassman parity.

Since 1-point functions of gauge fields are forbidden from Furry’s theorem and the 2-point
ones are also forbidden by the gauge symmetry. Hence the only possible counter terms are

• < sx >,< sy > (scalar 1point functions),

• < s2
x >,< s2

y > (scalar 2point functions).

In what follows, we will discuss the renormalization of these two operators.
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2.2 Infra-red problem for perturbative calculation and Calculational Method

2.2.1 Infra-red problem from fermion

The existence of an exact zero mode of the fermion matrix called ‘ever-existing zero mode’
pointed out by Giedt [7] make the fermion path-integral ill-defined.

In our study, in order to make path-integral well-defined we propose to introduce the following
fermion mass term with coefficientµF proportional to inverse number of volumeL so that the action
now becomes

S2 = S1 +
aµF

√
2

g2 Tr∑
n

(αnx̄nλn +βnȳnλn −αnyn+iξn +βnxn+j ξn). (2.3)

2.2.2 Problem from bosonic modes and calcualtional method

There is also infra-red problem from the massless zero momentum modes of bosonic fields
(gauge fields). Since there is no quadratic term of such modes, perturbative calculations based on
the gaussian integral becomes ill-defined, thus a special care must be taken for the zero momentum
modes. In our approach, we carry out non-perturbative calculation for the zero momentum modes
while non-zero momentum modes are treated perturbatively.

The order of our calculation is as follows; (1) Carry out the perturbative calculation only for
non-zero momentum modes, (2) Take the continuum limit (lattice spacinga→ 0), and then obtain
the effective action at continuum limit, (3) Carry out the non-perturbative calculation for zero-
momentum modes, (4) Take the large volume limit and investigate the behavior of green function
and then it becomes clear whether fine-tuning is needed or not.

3. Results

3.1 Non-zero mode calculation

3.1.1 1-point function

Non-vanishing 1-point functions are theU(1) part of the scalar fields̃s0
x,y(0). These 1- point

functions can be absorbed into the shift of the lattice spacinga like as1+〈s〉√
2a

in Eqs. (IV.1) and (IV.2)
of Ref.[6], where〈s〉 corresponds to the shift of the VEV. In the parameter region which quantum
effect becomes small, lattice structure remains stable.

By the calculation in such region we find that〈s〉 vanishes quadratically ina towards the
continuum limit as shown in Fig.1.

3.1.2 2-point function

We next study whether the contribution from the non-zero momentum mode integral to the
2-point functions(S(2)

1−loop)
α1α2
µν in Eq.(V.12) of Ref.[6];

(S(2)
1−loop)

α1α2
µν = [ δµ,0δν ,0 +δµ,2δν ,2][2δ α1,0δ α2,0S(2)

1−loop, U(1) +2Mδ α1,α2S(2)
1−loop, SU(2)] (3.1)

are relevant or not in the continuum limit. The numerical results ofS(2)
1−loop, SU(2) for several val-

ues of (1/N = a/L, µ̄F ≡ rF/N = aµF ) with µ̄ ≡ aµ = 1/N are given in Fig.2 with rF fixed.
S(2)

1−loop, U(1) behaves same way asS(2)
1−loop, SU(2).
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Figure 1: a dependence of the global minima
〈s〉 of Ve f f. Horizontal axis is lattice spacinga,
Vertical one is〈s〉. We take hereg2 = 1, the solid
line is for volumeL = 8, while the dashed line is
for L = 4.
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Figure 2: (1/N, µ̄F = rF/N) dependence of
the nonabelian part of the 1-loop mass correc-
tion from the non-zero momentum mode. The
horizontal axis is 1

N and the vertical axis is

S(2)
1−loop SU(2).

From Fig.2, we find that the 1-loop correction forrF 6= 0 does not vanish in the continuum
limit, while that forrF = 0 vanishes. We should avoid these corrections which are independent from
the volumeL. It becomes clear that one should adopt the following procedure in order to avoid the
appearance of such counter terms; (1) Compute physical quantities for fixed (1/N, µ̄F = rF/N), (2)
TakeµF → 0 with fixed 1/N first , i.e rF → 0, (3) Then take the continuum limit, i.e.1/N → 0 .
This two-step limit can avoid the counter terms as can be seen from Fig.2 and Eq. (V.17) of Ref.[6]
and make any loop correction for effective action irrelevant.

3.2 Zero mode calculation

No term of 1-loop contributions from non-zero momentum modes to the effective action can
survive in the continuum limit. Therefore in order to evaluate 1- and 2-point functions in the
continuum limit, we only have to perform the following integral

Iα1···αn
n = L

3n
2 g

n
2
2

∫
dφ̃(0)det[Dψ(0)]

n

∏
i=1

(s̃αi
µ (0))e−Sf in

∫
dφ̃(0)det[Dψ(0)]e−Sf in

, (3.2)

Sf in = ∑
µ>ν

Tr[φ̃µ(0), φ̃ν(0)]2 +
µ
g2

Tr[(s̃x(0)2 + s̃y(0)2)], (3.3)

which are same as Eqs. (V.18), (V.19) in Ref. [6]. Among these integral, only theSU(2) part of
the 2-point functionIa,b

2 becomes relevant for the discussion whether fine-tuning is needed or not
as discussed in Ref [6]. SinceIa,b

2 is the zero momentum mode of the propagator, it can be written
as Ia,b

2 = δ a,bL2m−2
R wherem2

R is the renormalized mass squared written as the sum of the tree

level mass squaredµ
2

g2
2

and the quantum correction∆µ2. Investigation is done with the numerical

calculation ofIa,b
2 = δ a,b < ss>. Simulations are carried out in the Metropolis algorithm with

2.0×105 sweeps for the thermalization and2.0×107 sweeps for the measurement. We estimate
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Figure 3: The lattice sizeL dependence of the 2-point function. The horizontal axis isL, where as the
vertical axis is〈ss〉.

the error by the variance with binsize of100sweeps. Since the 2-point function depends only on
the productg2L, we takeg2 = 1 without loosing generality. Fig.3 shows theL dependence of the
2-point function. As can be seen in Fig.3, we find that〈ss〉 increases withL. Fitting the data with
the following function〈ss〉 ∼ AL3+α , we obtainA = 0.65(20) andα = 0.210(46). This gives the
L dependence of the renormalized mass

mR2≡ µ2

g2
2

+∆µ2 ≡ L2〈ss〉−1 ∼ 1
AL1+α , (3.4)

which vanishes in the large volume limitL → ∞. Our result also implies that the contribution from
the quantum corrections becomes dominant for largeL. Thus in the continuum limit for finite
volume, there is a non-trivial mass correction which is larger than the tree level contributionµ

g2
.

However, after taking the infinite volume limit the mass term vanishes so that there is no need for
fine-tuning.

4. summary and conclusion

We concentrate and investigate the fine-tuning problem and the stability of the spacetime struc-
ture by an explicit perturbative calculation of scalar one-point and two-point functions for the two-
dimensionalU(2) lattice gauge model of CKKU [1] as an example. We point out that the naive
perturbative calculation suffers from the infra-red divergences due to the flat directions in the zero
momentum modes of gauge fields and fermion fields [7]. In order to avoid the infra-red divergence
for the fermion zero mode, we introduce a new soft susy breaking mass term for the fermion fields.
For the bosonic fields, we apply the perturbation only for the non-zero momentum mode and treat
the zero momentum mode non-perturbatively. We found that there appears non-trivial quantum
mass corrections in the continuum limit. However these corrections vanish in the infinite volume
limit so that the CKKU model does not need fine-tuning to recover the full supersymmetry. In addi-
tion to the fine-tuning problem discussed in this proceeding, several interesting results are obtained
by our explicit calculation as seen in Ref. [6]. Firstly, we found the constraint for the parameter
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region where the lattice theory is well-defined. And secondly, it is found that the fermion-boson
cancellation which suppresses the quantum corrections to the potential is needed to stabilize the
deconstructed spacetime in the physical region where the lattice size is larger than the correlation
length. Similar instability has been observed in the non-perturbative study [7] on the bosonic part
of the CKKU model for the (4,4) 2d super-Yang-Mills [2]. For more details see Ref. [6].
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