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1. Introduction

Supersymmetric Yang-Mills quantum mechanics by definitionareN = 1 super Yang-Mills
field quantum theories reduced fromD = d+ 1 to D = 0+ 1 dimensions [1]. Supersymmetry
requires the space-time dimension to beD = 2;4;6;10 with N = 2;4;8;16 supercharges in the
resulting quantum mechanics respectively. The gauge connection Aµ after dimensional reduction
becomes bosonic coordinatexi

a, i = 1; : : : ;d, a = 1; : : : ;N2� 1, in the adjoint representation of
SU(N). We will denote their conjugate momenta bypi

a, [xi
a; p j

b℄ = iδabδ i j . The hamiltonian is then

H = 1
2

pi
api

a+ 1
4

g2( fabcx
i
bx j

c)2+HF ; (1.1)

where HF = � i
2g fabcϑα

a xi
bΓi

αβ ϑβ
c for D = 3;10 andϑ are real spinors obeyingfϑα

a ;ϑβ
b g =

δ αβ δab, α ;β = 1; : : : ;N or HF = ig fabcϑ̄α
a xi

bΓi
αβ ϑβ

c for D = 4;6 andϑ are complex spinors

obeyingfϑ̄α
a ;ϑβ

b g= δ αβ δab for α ;β = 1; : : : ; N

2 . TheΓi
αβ are matrix representation of anSO(d)

Clifford algebrafΓi ;Γ jg = 2δ i j . The rational symmetry of the original theory become now the
internal Spin(d) symmetry. The constraints forA0 component of gauge connection require all the
physical states to beSU(N) singlets. It is also the condition for the supersymmetry i.e. hamiltonian
(1.1) is supersymmetric only in gauge invariant sector.

The bosonic part ofH was firstly discovered in pure Yang-Mills theory on lattice in the zero
volume limit [2]. Later on it appeared as a system describingquantum mechanics of a membrane
moving in d dimensional space and its supersymmetric extension i.e. the supermembrane [3]. The
reason why these models have been so extensively studied recently is the BFSS ( Banks, Fischler,
Shenker, Susskind ) conjecture [4] where it was argued that in N! ∞ limit Eg.(1.1) describes M-
theory in infinite momentum frame although the covariant formulation of the latter is still lacking.
The detailed study of the hamiltonian H shows that in bosonicsector the potential is confining and
there is no continuous spectrum [6]. If however the supersymmetry is turned on then in fermion
rich sectors there are bound states as well as scattering ones [7]. The only solutions existing in the
literature are for D=1+1,SU(2) [1] and its generalization for arbitrarySU(N) [5]. In this paper
we focus on these two dimensional systems using the numerical approach described in section 2.
In section 3 we give some general properties ofSU(N) models and present the detailed results for
SU(3) group.

2. Cutoff method

The cutoff method [8] is conceptually very simple. First of all we introduce bosonic and
fermionic creation and annihilation operatorsa†

a, aa, f †
a , fa 1 i.e.

aa = 1p
2
(xa+ ipa); fa = ϑb; [aa;a†

b℄ = δab; f fa; f †
bg= δab:

Next we truncate the Hilbert space to the maximal number of quanta

nB = ∑
b

a†
bab; nB � nBmax;

1Since we discuss only two dimensional models the spatial indices are omitted.
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compute matrix elements of H and diagonalize the resulting finite matrix. In this way one can
analyze thenBmax dependance of spectrum. There is a big difference between continuous and
discrete spectrum behavior with cutoff namely

EnBmax
m = Em+O(e�nBmax) � discrete spectrum

EnBmax
m = O( 1

nBmax
) � continuous spectrum

where m is an index of the energy levelm= 1; : : : ;nBmax+ 1. The limit nBmax�! ∞ is called
the continuum limit. In the discrete spectrum case the energy levels converge rapidly to the exact
eigenvalues of the hamiltonian. This may not be surprising however it is interesting to see how
fast the convergence is. For details the reader is referred to [9]. If the spectrum is continuous
the behavior is different. The convergence is very slow and all the eigenvalues vanish in infinite
cutoff limit. In the continuum limit the spectrum is supposed to be continuous therefore we have
to introduce the following scaling law [10]

m(nBmax) = const:pnBmax() EnBmax
m(nBmax) ! E:

It was claimed in [10] that this scaling law should work independently of the theory whenever
one can define scattering states asymptotically. The argument for the above claim is based on the
following fact. The eigenvalues of the momentum operator inordinary d=1 quantum mechanics in
cut Fock space are zeros of Hermite polynomialsHnB(x) the asymptotic behavior of which is1pnB

[9,10]. Therefore once the momentum operator is defined its spectrum cutoff dependance should
be 1p

nB
for largenB.

3. Two dimensional SYMQM

The hamiltonian inD = 2 reduces toH = 1
2 papa in a gauge invariant sector. It is free however

non trivial due to the gauge constraint. Since we are now working in SU(N) it is evident that any
gauge invariant state has to be of the form

Tbc:::de:::a†
ba†

c : : : f †
d f †

e : : : j 0i; (3.1)

whereTbc:::de::: is someSU(N) invariant tensor made out of structure tensorsfabc;dabc;δab. There
are plenty of identities between the later hance many statesof the form (3.1) will be linearly depen-
dant. We therefore ask how does the basis in gauge invariant sector look like when working with
structure tensors? In this section we present a very helpfuldiagrammatic method which gives us
the way to answer this question.

3.1 Birdtracs

In order to deal with the variety of all possible tensor contractions we introduce the diagram-
matic approach (figure 1).

Each leg corresponds to one index and summing over any two indices is simply gluing appro-
priate legs. Structure tensorsfi jk , di jk are represented by vertices andδi j is a line. Any tensor is
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=dfddfdf...
fijk

dijk =

=

Figure 1: Diagrammatic notation of invariant tensors.

now represented by a graph. Such diagrammatic approach has already been introduced long time
ago by Cvitanovǐc [11]. In general one can construct loop tensor which by definition is a tensor
that in diagrammatic notation looks like a loop. It can be proved [12] that any such loop can be
expressed in terms of forests i.e. products of tree tensors (figure 2).
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Figure 2: An example of loop reduction for pentagon made out ofdi jk tensors.

Therefore we are left with tree tensors only. These however can be easily expressed in terms of
trace tensorsTr(TaTb : : :) whereTa areSU(N) generators in fundamental representation. With the
use of the following matricesA† = a†

bTb, F† = f †
b Tb any gauge invariant state is an appropriate

linear combination of products of trace states

Tr(A†i1F†A†i2F† : : :A†ikF†) j 0i:
Due to the grassmann algebra the number of F matrices under the trace cannot be grater then
N2�1 i.e. k� N2�1. Moreover the Cayley-Hamilton theorem for A matrices gives ik � N. The
remaining set of states is still linearly dependent and the further analysis requires separate study of
eachSU(N). The basis states in F=0 sector are of the formj i2; i3; : : : ; iNi= Tri2(A†A†)Tri3(A†A†A†) : : :TriN(A† : : :A†) j 0i:
We see that there are as many states with given number of quanta nB as there are natural solutions
of the equation 2i2 +3i3+ : : :+NiN = nB. ForU(N) this would be exactlyp(nB) - the partition
number ofnB. For SU(N) this is a little less thep(nB) however it still grows exponentially withp

nB.
In order to compute the spectrum of the hamiltonian in bosonic sector one has to compute the

following scalar product

Si2:::iN
j2::: jN

= hi2 : : : iN j j2 : : : jNi;
275 / 4
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which in principle is a tedious task but not impossible.

We now discuss the "bilinear limit" i.e. the limit of the following restrictedSU(N) basisj 2ni= Trn(A†A†) j 0i; (3.2)

which was introduced by Lüscher in [2] only in D=3+1 case. In this basis the non zero hamiltonian
matrix elements are easy to derive which will be discussed elsewhere. Therefore it is straightfor-
ward to proceed with the cutoff analysis (figure 3).
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Figure 3: The cutoff dependance of spectrum forSU(2) andSU(100) in Lüscher basis.

We see that there is no quantitative difference betweenSU(2) and eg.SU(100) case. This is not
what we have expected and it means that the restricted basis (3.2) simplifies too much.

3.2 D = 1+1, SU(3) SYMQM

Here we briefly present the calculations of Hamiltonian matrix elements in bosonic sector. The
basis and the scalar products we are interested in are knowj i; ji= Tri(A†A†)Tr j(A†A†A†) j 0i; Si j

i0 j 0 = hi; j j i0; j 0i:
The only non vanishing elements ofSi j

i0 j 0 are the ones obeying the constraint 2i +3 j = 2i0+3 j 0.
Therefore it is convenient to work with the following symbol

Wk
i j = hi; j j Tr2k(AAA)Tr3k(A†A†) j i; ji;

which has the advantage of reproducing only the non vanishing Si j
i0 j 0 ’s. It is tedious but possible to

obtain formulas and recurrence equations forWk
i j hance one can, at least on the computer, derive

the exactSi j
i0 j 0 values. This S matrix is in fact the Gram matrix therefore itsnon block diagonal

form signals that we still have to orthogonalize the basis. We will not do so however. In order
to represent the hamiltonianH in orthogonal basis we follow [13]. It is sufficient to calculate the
gram matrixG and proceed with the following similarity transformation

Hort = G� 1
2 HG� 1

2 :
The results of the cutoff analysis are presented in figure 4. It is clear that the spectrum seems

to be far more complicated than inSU(2) case.
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Figure 4: The cutoff dependance of spectrum inD = 1+1,SU(3), F = 0.

4. Summary

SYMQM models seem to reveal verity of application in severalareas of physics (Yang-Mills
theories, supersymmetry, strings) hance their detailed analysis is of interest. Although they are rich
in symmetries (SU(N), SO(d), supersymmetry) the exact solutions are missing in the literature
forcing one to apply numerical methods. The cutoff method presented here is working surprisingly
well. The results in two dimensional systems are very encouraging and give a hope to proceed with
theN! ∞ limit especially when exact solutions in this case are known.
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