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1. Introduction

Supersymmetric Yang-Mills quantum mechanics by definitoa.# = 1 super Yang-Mills
field quantum theories reduced frotn=d + 1 to D = 0+ 1 dimensions [1]. Supersymmetry
requires the space-time dimension toe= 2,4,6,10 with .4 = 2,4,8,16 supercharges in the
resulting quantum mechanics respectively. The gauge ctioned, after dimensional reduction
becomes bosonic coordinaxg, i=1,...,d, a=1,...,N2—1, in the adjoint representation of
SU(N). We will denote their conjugate momenta ply, [X,, p.] = i3 . The hamiltonian is then

H = 2 phbh + 207 (fanobp)? + He a.1)
where Hg = —lzgfabcsgxgrgﬁsf for D = 3,10 and9 are real spinors obeyingdg,9F} =
0P8y, a,B=1,...,./ or Hp = igfabcﬂxgrgﬁﬁf for D = 4,6 andd are complex spinors
obeying{zﬂ’,ﬁf} =095 fora,p=1...., % Theria[3 are matrix representation of &0(d)
Clifford algebra{l"",["!} = 24". The rational symmetry of the original theory become now the
internal Spin(d) symmetry. The constraints &g component of gauge connection require all the
physical states to bBU(N) singlets. Itis also the condition for the supersymmetryhamiltonian
(1.1) is supersymmetric only in gauge invariant sector.

The bosonic part oH was firstly discovered in pure Yang-Mills theory on latticethe zero
volume limit [2]. Later on it appeared as a system descrilgjagntum mechanics of a membrane
moving in d dimensional space and its supersymmetric exten®. the supermembrane [3]. The
reason why these models have been so extensively studiewtlsers the BFSS ( Banks, Fischler,
Shenker, Susskind ) conjecture [4] where it was argued thdt-> oo limit Eg.(1.1) describes M-
theory in infinite momentum frame although the covarianirfolation of the latter is still lacking.
The detailed study of the hamiltonian H shows that in boseaator the potential is confining and
there is no continuous spectrum [6]. If however the supermsgtry is turned on then in fermion
rich sectors there are bound states as well as scatterirsy Gh& he only solutions existing in the
literature are for D=1+1SU(2) [1] and its generalization for arbitrai$U(N) [5]. In this paper
we focus on these two dimensional systems using the nurhappaoach described in section 2.
In section 3 we give some general propertieSO{N) models and present the detailed results for
SU(3) group.

2. Cutoff method

The cutoff method [8] is conceptually very simple. First dif e introduce bosonic and
fermionic creation and annihilation operater's, aa, f;r, falie.

1 .
Ba=—=(a+iPa); fa=9. [2adl]=0db {fafy}=3dw
V2
Next we truncate the Hilbert space to the maximal number ahtpu

+
Ng = %abab, N < NBmax

1Since we discuss only two dimensional models the spatiaéscare omitted.
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compute matrix elements of H and diagonalize the resultinigefimatrix. In this way one can
analyze thengmax dependance of spectrum. There is a big difference betweetinaous and
discrete spectrum behavior with cutoff namely

Epemax = B+ O(e” ™) — discrete spectrum

Err]]]Bmax — O(

) — continuous spectrum
NBmax

where m is an index of the energy level=1,...,ngmax+ 1. The limit ngmax— o is called
the continuum limit. In the discrete spectrum case the gnlexgels converge rapidly to the exact
eigenvalues of the hamiltonian. This may not be surprisiogrdver it is interesting to see how
fast the convergence is. For details the reader is refeod]t If the spectrum is continuous
the behavior is different. The convergence is very slow dhtha eigenvalues vanish in infinite
cutoff limit. In the continuum limit the spectrum is suppds® be continuous therefore we have
to introduce the following scaling law [10]

M(NBmay) = CONSty/Nmax <= Er’:f(‘;*]‘;a ad=

It was claimed in [10] that this scaling law should work indagently of the theory whenever
one can define scattering states asymptotically. The angufoethe above claim is based on the
following fact. The eigenvalues of the momentum operatariinary d=1 quantum mechanics in
cut Fock space are zeros of Hermite polynomkdis(x) the asymptotic behavior of which %
[9,10]. Therefore once the momentum operator is definecpsteum cutoff dependance should

be \/LWB for largeng.

3. Two dimensional SYMQM

The hamiltonian irD = 2 reduces tdd = %papa in a gauge invariant sector. It is free however
non trivial due to the gauge constraint. Since we are now ingria SU(N) it is evident that any
gauge invariant state has to be of the form

The.de. aal... f1f1...]0), (3.1)

whereTyc_ ge.. IS SOmeSU(N) invariant tensor made out of structure tenstyig, dapc, ap. There
are plenty of identities between the later hance many stétbe form (3.1) will be linearly depen-
dant. We therefore ask how does the basis in gauge invaeatdrdook like when working with
structure tensors? In this section we present a very hetiifigirammatic method which gives us
the way to answer this question.

3.1 Birdtracs

In order to deal with the variety of all possible tensor caations we introduce the diagram-
matic approach (figure 1).

Each leg corresponds to one index and summing over any ticemds simply gluing appro-
priate legs. Structure tensofgk, dijx are represented by vertices afgis a line. Any tensor is
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dfddfdf...=

Figure 1. Diagrammatic notation of invariant tensors.

now represented by a graph. Such diagrammatic approacHreadyabeen introduced long time
ago by Cvitanow [11]. In general one can construct loop tensor which by difinis a tensor
that in diagrammatic notation looks like a loop. It can beve[12] that any such loop can be
expressed in terms of forests i.e. products of tree tendayarg 2).

Figure 2: An example of loop reduction for pentagon made outigftensors.

Therefore we are left with tree tensors only. These howeaarlbe easily expressed in terms of

trace tensor3 r(T,Tp...) whereT, are SU(N) generators in fundamental representation. With the
use of the following matriced = agTb, FT = fJTb any gauge invariant state is an appropriate
linear combination of products of trace states

TrAMETATPET . ATET) | 0).

Due to the grassmann algebra the number of F matrices unéddrabe cannot be grater then
N2 —1i.e. k< N2—1. Moreover the Cayley-Hamilton theorem for A matrices giwe< N. The
remaining set of states is still linearly dependent and tinda&r analysis requires separate study of
eachSU(N). The basis states in F=0 sector are of the form

lig,is,...,in) = Tr2(ATAN T3 (ATATAT) . Triv(AT. . AT) | 0).

We see that there are as many states with given number ofaguaat there are natural solutions
of the equation & + 3iz+ ...+ Niy = ng. ForU(N) this would be exactlyp(ng) - the partition
number ofng. For SU(N) this is a little less thep(ng) however it still grows exponentially with
V/MB.
In order to compute the spectrum of the hamiltonian in baseattor one has to compute the
following scalar product
S-z"'IN = <I2 .. iN ‘ j2. .. jN>,

Joodn
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which in principle is a tedious task but not impossible.
We now discuss the "bilinear limit" i.e. the limit of the folwing restrictedSU(N) basis

| 2n) = TrM(ATAT) | 0), (3.2)

which was introduced by Luscher in [2] only in D=3+1 case.His basis the non zero hamiltonian
matrix elements are easy to derive which will be discusssegiere. Therefore it is straightfor-
ward to proceed with the cutoff analysis (figure 3).
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Figure 3: The cutoff dependance of spectrum £1d(2) andSU(100) in Luscher basis.

We see that there is no quantitative difference betw#ldf2) and eg.SU(100) case. This is not
what we have expected and it means that the restricted I@a8)ss{mplifies too much.

32 D=1+1,SU(3) SYMQM
Here we briefly present the calculations of Hamiltonian matiements in bosonic sector. The
basis and the scalar products we are interested in are know

i) =T (ATANTHATATAN [0), 81, =(i,j [T,

The only non vanishing elements lijfjj, are the ones obeying the constraint-23j = 2i’ + 3j'.
Therefore it is convenient to work with the following symbol

WK = (i, ] | TAARTI}ATAT) |1, j),

which has the advantage of reproducing only the non vargsﬂjh,’s. It is tedious but possible to
obtain formulas and recurrence equations\/ﬁﬁ? hance one can, at least on the computer, derive
the exactS,jj, values. This S matrix is in fact the Gram matrix thereforeniv® block diagonal
form signals that we still have to orthogonalize the basie Will not do so however. In order
to represent the hamiltoniad in orthogonal basis we follow [13]. It is sufficient to calaté the
gram matrixG and proceed with the following similarity transformation

Hort = G 2HG 2.

The results of the cutoff analysis are presented in figuré i4.dlear that the spectrum seems
to be far more complicated than 8U(2) case.
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0

Figure4: The cutoff dependance of spectrunDn=1+1,SU(3), F = 0.

4. Summary

SYMQM models seem to reveal verity of application in sevaraias of physics (Yang-Mills
theories, supersymmetry, strings) hance their detailetysis is of interest. Although they are rich
in symmetries $U(N), SQ(d), supersymmetry) the exact solutions are missing in theatitee
forcing one to apply numerical methods. The cutoff methabented here is working surprisingly
well. The results in two dimensional systems are very eraging and give a hope to proceed with
theN — oo limit especially when exact solutions in this case are known
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