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order at strong coupling.
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1. Introduction

One of the most striking aspects of high-energy hadronic scattering is the rise in the total cross
section, σT (s), at the highest available energies to date. In Regge language, this requires a leading J-
plane singularity, referred to as the Pomeron, with vacuum quantum numbers and an intercept above
j = 1, for the forward elastic amplitude A (s, t). In the large N expansion for QCD, the Pomeron
is the first term or cylinder exchange diagram in the t-channel. At present energies, there appear to
be relatively small unitarity corrections, although they must ultimately enter to satisfy the Froissart
bound, σT = O(m−2

π log2(s)). However there are currently two seemingly conflicting theoretical
interpretations of high energy amplitudes in QCD: One is the so-called Balitsky-Fadin-Kuraev-
Lipatov (BFKL) or “Hard” Pomeron, based on leading g2N log(s) perturbative approximation and
the other is the “Soft” Pomeron or the traditional Regge pole in the J-plane at j = αP(t) that
interpolates the glueball resonances for even integer values of j.

The central focus of this talk is present a natural synthesis of both approaches based on
AdS/CFT duality. The resulting J-plane structure illustrated in Fig. 1 has both the soft Pomeron
Regge pole and a hard Pomeron cut located at αBFKL(0) = 2−2/

√

g2N in leading order in strong
coupling. The reader is referred to a forth coming article by Brower, Polchinski, Strassler and
Tan [1] for a much more rigorous and complete discussion based on the operator products expan-
sion in the conformal gauge. We begin in the next section by briefly reviewing key features of
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Figure 1: Soft Pomeron Regge pole at j = αP(t) terminates at the BFKL cut with intercept at j = αBFKL(0)

the perturbative (BFKL) Pomeron and the non-perturbative (Regge pole) Pomeron, emphasizing
both their differences and similarities. We next show how these key features can be unified in a
curved-space string theory in a light-cone description.

2. Diffusion in Impact Space and Virtuality

Due to a linear confining potential, the QCD spectrum is expected to contains states with arbi-
trarily high spin and masses, lying on nearly parallel Regge trajectories, in the large N limit. Also
the classic Regge behavior, A ∼ sα(t) for a linear trajectory α(t) = α0 + α ′t satisfies a diffusion
equation in impact parameter space,

[ ∂y −α0 −α ′∂ 2
x⊥ ] K(y;x⊥,x′⊥) = δ 2(x⊥− x′⊥) δ (y) , (2.1)
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as can be seen by taking the Fourier transform:
∫

d2k⊥eik⊥·x⊥sα0−α ′k2
⊥ ∼ sα0e−x2

⊥/4α ′ lns/(α ′ lns). On
the other hand, the leading log summation of perturbative diagrams by Balitsky and Lipatov and by
Fadin and Kuraev for scattering at small fixed angles and high energies (s �−t � ΛQCD), exhibits
an entirely different diffusion process. In the forward direction the BFKL elastic amplitude [2],

A(s,0) '
∫

dk⊥
k⊥

∫

dk′⊥
k′⊥

Φ12(k⊥)K(s;k⊥,k′⊥)Φ34(k
′
⊥), (2.2)

is given in terms of the hadronic impact factors Φi j and a t-channel 2-gluon interaction kernel
K. The variables k⊥ =

√
k2 are a measure of the off-shell dependence of the gluons referred as

“virtuality”. The exact kernel is known and well approximated by

K(s,k⊥,k′⊥) =
sω0

√
π lns

e−[(lnk′⊥−lnk⊥)2/4D lns] , (2.3)

where ω0 = λ ln2/π2, and D = 14ζ (3)λ/π with the ’tHooft coupling λ = g2N. We recognize K
as a the kernel for 1-d diffusion occurring in lnk⊥ over a time lns. The diagrams contributing to
the BFKL equation (2.3) is consistent with the large N limit and conformal invariance as exhibited
by its dependence on the ’tHooft coupling and the scale invariance of the kernel (k⊥ → ηk⊥)
respectively.

Immediately one may ask if there isn’t a single equation combining diffusion in both impact
space and conformal “virtuality”. To examine this we turn to an AdS5 model for the QCD string,

ds2 =
r2

R2
ads

(d~x2 −dx02
)+

R2
ads

r2 dr2 , r ∈ [rmin,∞] , (2.4)

inspired by AdS/CFT holography [4]. To accommodate the nearly conformal character of QCD, the
target space geometry in the UV should be asymptotically near to AdS up to logarithmic terms due
to asymptotic freedom. To accommodate confinement the simplest choice, suggested by Polchinski
and Strassler, is a pure AdS5 space with a hardwall cut-off at Λqcd = rmin/R2

ads. The resulting
diffusion kernel (at large r away from the IR cut-off) is

K(s;r,r′) =
sω0

√
π lns

e−[(lnr′−lnr)2/4D lns] , (2.5)

where now ω0 = 2− 2/
√

λ , and D = 1/2
√

λ . Comparing this with Eq. (2.3), one sees in this
context that the spatial coordinate r of the string theory should be identified with the momentum
k⊥ of the gauge theory, which has an another example of the well known UV/IR holographic
correspondence. In the next section, we will explain how this result follow for string scattering in
AdS5 using Mandlestam’s light-cone gauge path integral.

3. Description in light-cone gauge

The light-cone gauge for string theory eliminates all spurious degrees of freedom in favor
of the transverse bosonic fields X⊥(σ ,τ) = (X1,X2) and R(σ ,τ) by fixing X+(σ ,τ) ≡ (X0 +

X3)/
√

2 = τ , P+(σ ,τ) = const and the first derivatives of X−(σ ,τ) = (X0 −X3)/
√

2 as quadratic
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functions of the transverse fields via the Virasoro constraints. For example, elastic scattering am-
plitude (p1, p3 →−p2,−p4), is given by the light-cone path integral,

A (s, t)δ 2(p⊥1 + p⊥2 + p⊥3 + p⊥4 ) = N

∫

dT
∫

DX⊥DY G1/2[Z] V1V2V3V4 e−
∫

dτ
∫ p+

0 dσL [X⊥,Z]

(3.1)
where for the AdS radial fluctuation we use the reciprocal field Z(σ ,τ) = R2

ads/R(σ ,τ). Scattering
takes place on the world sheet illustrated in Fig. 2, with Neumann (open) or periodic (closed)
boundary condition on the edges. The modulus T is the time τ in the interaction region. Closed
strings have one additional modulus to enforce level matching.

p+
3 −p+

4

τ = 0 ↔ T

p+
1 −p+

2

6
σ

-
τ

Figure 2: The light-cone world sheet domain, X+ = τ ∈ [−∞,∞], σ ∈ [0, p+],with p+ = p+
1 + p+

3 for elastic
scattering in the brickwall frame.

It is natural to choose the width of the world sheet to be the total conserved p+ = p+
1 + p+

3 . The
in/out external particles are inserted by vertex operators Vi at τ = ∓∞ respectively. The light-cone
Lagrangian in AdS space [3] is

L =
1
2

∫ p+

0
dσ [Ẋ2

⊥ + Ż2 +
1

(2πα ′
e f f [Z])2 (X ′

⊥
2
+Z′2)] , (3.2)

where the effective slope is α ′
e f f [Z] = α ′Z2/R2

ads. Ignoring the IR cut-off, we have a residual
conformal invariance: Z →ηZ,X⊥ →ηX⊥,τ →ητ,σ →σ/η . To exploit this we change variables
to U(σ ,τ) =− ln[Z(σ ,τ)/Rads] and make a semi-classical expansions around the zero modes U =

u, X⊥ = x⊥. To Gaussian order the essential new feature relative to flat space is an effective string
slope, α ′

e f f (u) = α ′e−2u, that depends locally on position in the extra dimension.

3.1 Regge limit in flat space

Let us begin by considering the classical Regge diffusion in flat space by freezing the radial
field: R(σ ,τ) = rmin, which technically replaces α ′ for strings by α ′

qcd = α ′R2
ads/r2

min. With this
constraint, the theory is exactly Gaussian with a normal mode expansion for each external state,

X⊥(σ ,τ) = x⊥ + i
p⊥
p+

τ +

√

2
p+

∞

∑
n=1

Xn(τ)cos(ωnσ/c) , Xn(τ) =
a†

ne−ωnτ +aneωnτ
√

2ωn
, (3.3)

with frequencies ωn = n/(2α ′p+) dependent inversely on p+. Consequently in the light-cone frame
strings with small/large longitudinal boosts appear to be more strongly/weakly bound.
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Now the Regge limit with p+
3 ' 1/p+

1 ∼
√

s is dominated by a vanishing interaction time
T ∼ 1/

√
s. To zeroth order, the two separate strings momentarily join at a point with Dirichlet

boundary condition and the Regge amplitude factorizes,

A (s, t)δ 2(p⊥1 + p⊥2 + p⊥3 + p⊥4 ) '
∫

d2k⊥

(2π)2 V12(k
⊥) F34(−k⊥) , (3.4)

in terms of “short” and “long” string form factors V12 and F34. The expression is asymmetric as a
natural consequence of the “infinite momentum” frame.

For the “short” string (p+
1 ∼ 1/

√
s), the excitation frequencies in the wave function grow

forcing it to interact like a rigid point-like object: V12(k) ∼ (2π)2δ 2(p⊥1 + p⊥2 − k⊥). On the other
hand, the “long” string (p+

3 ∼
√

s) becomes more weakly bound and it has a non-trivial form factor
that must be treated to first order in T. It can be evaluate by expanding in normal modes [1],

F34(−k⊥) ' 2(2π)2δ 2(p⊥3 + p⊥4 + k⊥)
∫

dT T−2 p+e−p−T exp[ −∑
n

α ′k2
⊥

n+n2T/2α ′p+
3

]. (3.5)

The sum in the exponent, at large p+
3 ' s/2p−, leads to logarithmic growth in impact parameter or

so called Regge shrinkage of the form factor, giving the final result,

A (s, t) ' Γ[−1−α ′t] (−α ′s)1+α ′t , (3.6)

where t = −k2
⊥. As explained above the s-dependent term is the solution to the diffusion Eq. 2.1.

3.2 Regge limit in warped spacetime

Again diffusion takes place only for the constituent (partons or string bits) in the “long”
boosted string. In the semi-classical approximation the calculation is analogous to the flat space
example, except that in Eq. 3.5 α ′ is replaced by an effective Regge slope, α ′

e f f (u), and a new term
ν2 is added to α ′

e f f (u)k2
⊥, where ν is the "momentum" conjugate to the radial co-ordinate u. For

k2
⊥ = 0, the ν2 factor clearly corresponds to diffusion in the radial direction: u ∼ lnr. For non-zero

k2
⊥ 6= 0, ν must be represented as an operator, ν = i∂u, conjugate to u. In fact, to maintain general

covariance, one also needs to go to the one-loop order beyond the Gaussian approximation. Alter-
natively, one can fix the operator ordering by comparison with the covariant vector field equation
in AdS space at j = 1. Transforming to the J-plane, the diffusion equation for the open string is

[ j−1−α ′ e−2u∂ 2
x − 1√

λ
(∂ 2

u −1)] K( j;x,u,x′,u′) = δ 2(x− x′)δ (u−u′) , (3.7)

to leading order in α ′ = R2
ads/

√

g2N. We note that diffusion in u suppresses the corresponding
diffusion in impact parameter space, giving rise to the BFKL cut at t < 0 for the open string Regge
exchange starting at j = 1−1/

√
λ .

The generalization to the closed string is essential trivial. One changes to periodic boundary
condition on the world sheet in Fig 2 and introduces an additional modulus that rotates the Riemann
surface around a cut on the s-channel intermediate closed string. This has the effect of replacing
α ′ → 1

2 α ′. Again we can also avoid calculating beyond the Gaussian approximation by match in
the strong coupling limit, at j = 2, with the equation for tensor glueballs. The final result for our
diffusion kernel, in a j-t representation, is

[ j−2− α ′

2
t e−2u− 1

2
√

λ
(∂ 2

u −4))] K( j, t;u,u′) = δ (u−u′) . (3.8)
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4. Discussion

The spectral representation for diffusion kernel K( j, t;u,u′) is expressed in terms of the com-
plete set of solutions to the Schrodinger equation, (− 1

2
√

λ
∂ 2

u +Ve f f (u, t))ψ(u) = Eψ(u), where
Ve f f (u, t) is bounded from below and E ≡ 2− j. This determines the spectrum in j as a function of
t. Using the hardwall model in Eq.2.4 with Ve f f = 2/

√
λ −α ′te−2u/2, the solution can be obtained

in terms of Bessel functions. The general structure for the leading J-plane singularities is depicted
in Fig. 1. Let us comment briefly on some of the key features.

First we concentrate on the region for t large and negative. Since the effective potential ap-
proaches a constant, 2/

√
λ , the spectrum has a continuum, which corresponds to a branch cut at

j = 2− 2/
√

λ , which is the location of the BFKL in the strong coupling limit. We next examine
whether there exists bound states, i.e. poles in j above the BFKL cut, as one increases t. For small
negative t, the BFKL cut persists and the physics becomes more sensitive to the confinement defor-
mation, which in the hardwall model is crudely represented by the cutoff at rmin = Radsexp[umin].
Since the potential is monotonic in the hard wall model, there is clearly no bound state and the
leading J-plane singularity is the BFKL cut. Finally for t > 0 the effective potential has a minimum
at umin and bound states can now be formed. As one increases t, more and more bound states appear
and the leading trajectory is approximately linear, as depicted in Fig. 1. In particular, at j = 2, it
determines the mass of the leading tensor glueball. As one decreases t towards the forward limit,
the leading trajectory continue to decrease approximately linearly.

Close to t = 0, the physics is clearly sensitive to details of confinement deformation in the
IR and is obviously model dependent. The effect of asymptotic freedom can also be taken into
account for t large and negative. This one of as series of issues will be addressed in the forth-
coming publications [1] in much greater detail. After decades of effort in studying QCD at high
energy, string/gauge duality has begun to shed new light on how to reconcile BFKL, which has its
origin in a perturbative analysis, and the soft Pomeron, which is a non-perturbative consequence of
confinement. The close connection between the BFKL equation for the hard Pomeron and GLAP
equation for structure functions raises the challenge to lattice methods on how to compute the non-
perturbative impact factors in Eq. 2.2 essential to an overall normalization of the hard Pomeron
component for physical hadron scattering at high energies. Much more can be done. The work has
just begun.
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