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Gluon field configurations with non-trivial topology like instantons, magnetic monopoles and

center vortices play a crucial role in QCD and, in particular, for the spontaneous breaking of

chiral symmetry. Moreover, center vortices are strongly correlated with confinement. We present

evidence, that there is a deep connection between the topology of gauge fields and center vortices.

We use the chirally improved lattice Dirac operator to compute eigenvectors and eigenvalues of

various lattice gauge field configurations. Removing vortices from thermalized configurations

also removes the topological content of the gauge field. As a consistency check, we apply random

changes to the raw configurations.
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1. Introduction

It has long been known that the low lying eigenmodes of the Dirac operator are a good tool
to detect infrared, localized structures in lattice gauge fields. In addition, the spectrum of the
Dirac operator allows to detect chiral symmetry breaking via the Banks-Casher relation [1]. The
breaking of chiral symmetry is usually attributed to instanton-like structures, while center vortices
are considered to be responsible for confinement. However, both structures, instantons and vortices,
give rise to zero modes of the Dirac operator [2]. This is in accord with the Atiyah-Singer-Index
theorem [3], since both types of configurations carry topological charge. In the case of center
vortices topological charge is realized by vortex intersection [4, 5] and writhing [5].

We will use the properties of Dirac eigenvalues and eigenvectors to investigate the relation
between vortices, chiral symmetry and topology [6]. We used quenchedSU(2) configurations. All
the results presented here are for the Chirally Improved Dirac operator [7, 8].

The first step is to identify vortices on the lattice. This is usually done after a suitable gauge
fixing. A common choice is the maximal center gauge. In our case, the quantity
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is maximized by applying gauge transformationsg. In the above equation,V is the number of
lattice sites andUg

µ(x) is the link variable after a gauge transformationg.
ForSU(2), the center projected link variableZµ(x) is defined as:

Zµ(x) = sign Re tr
(
Uµ(x)

)
. (1.2)

2. Vortex Removal

If we want to understand how vortices influence the spectrum of the Diracoperator, the fol-
lowing idea might come to your mind: Perform gauge fixing and a subsequentcenter projection as
described above, in order to produce “vortex only” configurations. Then compute the eigenvalues
and eigenvectors for these configurations directly. However, it turns out that this approach is too
naive. The center projected configurations consist entirely of links thatare either+1 or−1. In this
sense, they are maximally discontinuous and not suitable for the analysis with our Dirac operator.
Another approach has to be followed.

The method of choice is the removal of center vortices, as introduced in [9]. The new config-
urations, called “vortex removed configurations,” are given by

U rem.
µ (x) = Uµ(x) Z†

µ(x) (2.1)

for every lattice sitex. They are void of center vortices in the sense that center projection of a
vortex removed configuration yields a trivial gauge configuration.

Let us first look at the plots in Figure 1. On the left hand side, we show a superposition
of ten spectra for the original (“raw”) configurations. The eigenvalues are close to the Ginsparg-
Wilson circle, just as one would expect for the Chirally Improved Dirac operator. The eigenvalues
extend all the way down to real eigenvalues, which shows that the underlying configurations are in
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Figure 1: Dirac spectra for the Chirally Improved Dirac operator for various gauge field configurations.
Each plot contains the superimposed spectra for 10 gauge field configurations. All spectra have been com-
puted for anti-periodic fermionic boundary conditions in the time direction.

the chirally broken phase. There are also many real eigenvalues, i.e., there are Dirac zero modes
connected with the raw configurations. This shows that many raw configurations are topologically
non-trivial.

The spectra of the vortex removed configurations show a completely different picture: There
are no more real eigenvalues and thus no more topological modes. In addition, a large gap opened
around the origin. The Banks-Casher relation [1] tells us, that we are now in the chirally restored
phase. Since the eigenvalues stay close to the Ginsparg-Wilson circle, we know that our Dirac
operator works well for vortex removed configurations.

A prominent feature is, that the eigenvalues for vortex removed configurations form clusters in
the complex plane. If one looks closely, one sees that there are eight eigenvalues per configuration
in the lowest cluster. We would like to point out that the degeneracy of the lowest eigenvalue for a
free field is also eight (anti-periodic temporal b.c.). The spectrum of the free field is shown in the
right hand side plot of Figure 1.

3. Distribution of Eigenvalues

We want to probe the clustering of eigenvalues, as mentioned in the previoussection. In
particular, we want to know if there is a connection between the number of eigenvalues in a cluster
and the degeneracy of the eigenvalues for a trivial field. For this purpose we modify the boundary
condition of the fermion field in the time direction: When the fermion fields wind oncearound the
lattice in the time direction, they can acquire a phase. All other directions have periodic boundary
conditions. Thus the eigenvectors~v obey

~v(x+L ı̂ ) =~v(x), ı̂ = 1̂, 2̂, 3̂, ~v(x+L 4̂ ) = ei2πζ~v(x), (3.1)

whereL is the size of the lattice, ˆı are the unit vectors in the spatial directions and4̂ is the unit
vector in the time direction.
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Figure 2: Histograms and cumulative histograms for the imaginary part of the Dirac spectra.

The important fact is, that the degeneracy of the eigenvalues for a freefield depends on the
parameterζ . It is 8 in the case ofζ = 0, ζ = 1/2 and it is 4 in the case ofζ = 1/4.

Figure 2 shows histograms and cumulative histograms of Dirac spectra for vortex removed
configurations. We plot the density of eigenvalues as a function of Imλ . The upper row shows
regular, normalized histograms. The lower row shows cumulative histograms, normalized by the
number of configurations used. The vertical line marks the starting point for the cumulative his-
tograms. Clearly, we see that the lumpy structure of the spectrum as seen in Figure 1 is reflected
by the peaks in the regular histograms. These peaks then show up as plateaus and kinks in the
cumulative histograms. The horizontal lines mark the plateaus and kinks. We see that the position
of plateaus and kinks of the cumulative histograms nicely matches the degeneracy of the free Dirac
operator for a given value ofζ . This is an indication that the vortex removed configurations are
almost trivial configurations.

4. The Effects of Random Changes

The removal of vortices is quite a drastic change to the configuration. In our case, almost half
of the links were changed. However, these changes occur in a highly non-trivial manner. Yet, one
could criticize the vortex removal: Suppose the underlying topological structures of the gauge field
are sensitive to arbitrary small changes of the configuration. This would mean that vortex removal
cannot make a statement about the nature of the topological structures. Toinvalidate this critique,
we apply random changes to the configuration. If the topological structures survive this test, we
conclude that the vortices are strongly correlated with the relevant topological structures.

One question remains: How many links do we have to change at random in order to perform
a sensible test? The number of links, that are changed to remove the vortices, is surely not a good
quantity. Note that the gauge fixing in Eq. (1.1) does not fix the gauge completely: There is a
remainingZ2 gauge freedom that can be used to vary the number of negative links. Thus, instead
of using the total number of random changes, we use the average plaquette 〈Up〉 as a measure to
determine how many links we should change randomly. Table 1 gives the overview of the situation.
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links changed plaquettes changed 〈Up〉

original (raw) configurations none none 0.651

vortex removed configurations 50.0% 3.3% 0.621

randomly changed configurations 1.2% 4.6% 0.590

6.0% 20.1% 0.389

24.1% 46.5% 0.046

Table 1: Comparison of the number of changed links, changed plaquettes and the change of the average
plaquette for vortex removed and randomly changed configurations.
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Figure 3: Dirac spectrum of a single configuration. It is shown for the unchanged, (raw) configuration, the
same configuration with the vortices removed, and with random changes applied to the raw configuration.

For our randomly changed configurations, we changed 1000 links, which corresponds to changing
1.2% of the links on a 124 lattice.

Figure 3 shows the effect for a single configuration. As discussed above, the vortex removed
spectrum looks completely different. In contrast, the spectrum for the randomly changed configu-
ration looks essentially like the original (raw) spectrum. In particular, the number of zero modes
did not change by the random changes. In Figure 4 we show the distribution of the topological
charge for 100 configurations before and after random changes. We see that the overall shape of
the distribution did not change.

5. Conclusions and Outlook

We can conclude that removal of the vortices produces configurations that resemble free fields.
These vortex removed fields are void of topological structures and chiral symmetry is restored.
Applying random changes to the original configuration shows that the removal of vortices is indeed
a sensible method to probe the connection between vortex-like structures and topology. ForZ2

projected configurations the situation is different. In the case ofZ2 configurations that have been
derived from thermalized configurations, the fermionic analysis does notyield sensible results.
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Figure 4: This figure shows the distribution of the topological chargeQ for raw and randomly changed
configurations. Vortex removed configurations always haveQ = 0.

However, in the case of hand constructed vortices, analytic results are reproduced. Especially, the
low-lying, non-zero modes of the Dirac operator do feel the presence of vortices, even for center
projected configurations. For a detailed discussion of hand constructedconfigurations see [6].
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