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1. Introduction

It has long been known that the low lying eigenmodes of the Dirac opersga good tool
to detect infrared, localized structures in lattice gauge fields. In additiensplectrum of the
Dirac operator allows to detect chiral symmetry breaking via the BankkeZaslation [[L]. The
breaking of chiral symmetry is usually attributed to instanton-like structuriee wenter vortices
are considered to be responsible for confinement. However, botlwstsacinstantons and vortices,
give rise to zero modes of the Dirac opera{dr [2]. This is in accord with tiyalA-Singer-Index
theorem [[B], since both types of configurations carry topologicalgehain the case of center
vortices topological charge is realized by vortex intersecfipf][4, 5] aittiing [B].

We will use the properties of Dirac eigenvalues and eigenvectors to ingtstige relation
between vortices, chiral symmetry and topolofly [6]. We used quer8béz) configurations. All
the results presented here are for the Chirally Improved Dirac opef@a{8}. [

The first step is to identify vortices on the lattice. This is usually done afteitald®l gauge
fixing. A common choice is the maximal center gauge. In our case, the quantity
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is maximized by applying gauge transformatiansin the above equatiory is the number of
lattice sites anttuﬁ(x) is the link variable after a gauge transformat@mn
For SU(2), the center projected link variab®, (x) is defined as:

Z,(x) = sign Re tr(Uy(x)) . (1.2)

2. Vortex Removal

If we want to understand how vortices influence the spectrum of the Dpacator, the fol-
lowing idea might come to your mind: Perform gauge fixing and a subseqaatdr projection as
described above, in order to produce “vortex only” configuratioteerifcompute the eigenvalues
and eigenvectors for these configurations directly. However, it tunhshat this approach is too
naive. The center projected configurations consist entirely of linksatteagither+1 or —1. In this
sense, they are maximally discontinuous and not suitable for the analysisuwifirac operator.
Another approach has to be followed.

The method of choice is the removal of center vortices, as introduc€l. i @] new config-
urations, called “vortex removed configurations,” are given by

U[E™(x) = Uu(x) Z}(x) (2.1)

for every lattice sitex. They are void of center vortices in the sense that center projection of a
vortex removed configuration yields a trivial gauge configuration.

Let us first look at the plots in Figujgé 1. On the left hand side, we showparposition
of ten spectra for the original (“raw”) configurations. The eigenvalaee close to the Ginsparg-
Wilson circle, just as one would expect for the Chirally Improved Diracatme. The eigenvalues
extend all the way down to real eigenvalues, which shows that the uirdedgnfigurations are in
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Figure 1: Dirac spectra for the Chirally Improved Dirac operator farious gauge field configurations.
Each plot contains the superimposed spectra for 10 gaugechefiigurations. All spectra have been com-
puted for anti-periodic fermionic boundary conditionstie time direction.

the chirally broken phase. There are also many real eigenvalues, ire. atleeDirac zero modes
connected with the raw configurations. This shows that many raw coafigas are topologically
non-trivial.

The spectra of the vortex removed configurations show a completelyatiffeicture: There
are no more real eigenvalues and thus no more topological modes. In additiasge gap opened
around the origin. The Banks-Casher relatign [1] tells us, that we avemthe chirally restored
phase. Since the eigenvalues stay close to the Ginsparg-Wilson circlenometkat our Dirac
operator works well for vortex removed configurations.

A prominent feature is, that the eigenvalues for vortex removed confignsform clusters in
the complex plane. If one looks closely, one sees that there are eighta&liges per configuration
in the lowest cluster. We would like to point out that the degeneracy of thedbeigenvalue for a
free field is also eight (anti-periodic temporal b.c.). The spectrum of geeffeld is shown in the
right hand side plot of Figurg 1.

3. Distribution of Eigenvalues

We want to probe the clustering of eigenvalues, as mentioned in the preséatisn. In
particular, we want to know if there is a connection between the numbererigtues in a cluster
and the degeneracy of the eigenvalues for a trivial field. For this gerp@ modify the boundary
condition of the fermion field in the time direction: When the fermion fields wind @roend the
lattice in the time direction, they can acquire a phase. All other directions leiadjc boundary
conditions. Thus the eigenvectaisbey

Vx+LT)=V(x), 7=1,2,3, V(x+L4)=é?@y(x), (3.1)

wherelL is the size of the lattice, &re the unit vectors in the spatial directions anis the unit
vector in the time direction.
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Figure 2: Histograms and cumulative histograms for the imaginary @fsthe Dirac spectra.

The important fact is, that the degeneracy of the eigenvalues for didtdedepends on the
parametet. Itis 8 in the case of =0, =1/2 and itis 4 in the case ¢f = 1/4.

Figure[R shows histograms and cumulative histograms of Dirac spectratiexvemoved
configurations. We plot the density of eigenvalues as a function of.Infthe upper row shows
regular, normalized histograms. The lower row shows cumulative histogram®alized by the
number of configurations used. The vertical line marks the starting paithéocumulative his-
tograms. Clearly, we see that the lumpy structure of the spectrum as seiguiia[F is reflected
by the peaks in the regular histograms. These peaks then show up asipkteiakinks in the
cumulative histograms. The horizontal lines mark the plateaus and kinkse&\leat the position
of plateaus and kinks of the cumulative histograms nicely matches the daggoéthe free Dirac
operator for a given value af. This is an indication that the vortex removed configurations are
almost trivial configurations.

4. The Effects of Random Changes

The removal of vortices is quite a drastic change to the configuration.rloase, almost half
of the links were changed. However, these changes occur in a highlyrie@l manner. Yet, one
could criticize the vortex removal: Suppose the underlying topologicaltstes of the gauge field
are sensitive to arbitrary small changes of the configuration. This woudah i@t vortex removal
cannot make a statement about the nature of the topological structuresalidate this critique,
we apply random changes to the configuration. If the topological stessurvive this test, we
conclude that the vortices are strongly correlated with the relevant tapal@gructures.

One question remains: How many links do we have to change at randomentorgerform
a sensible test? The number of links, that are changed to remove the vastisgly not a good
quantity. Note that the gauge fixing in E¢. {1.1) does not fix the gauge ctehplérhere is a
remainingZ, gauge freedom that can be used to vary the number of negative links, ifistead
of using the total number of random changes, we use the average éadiy; as a measure to
determine how many links we should change randomly. T@ble 1 gives thé@wef the situation.
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links changed plaquettes changed (Up)

original (raw) configurations none none | 0. 651
vortex removed configurations 50. 0% 3.3%| 0.621
randomly changed configurations 1.2% 4.6%| 0. 590
6. 0% 20. 1%/ 0. 389

24. 1% 46.5%/| 0. 046

Table 1: Comparison of the number of changed links, changed plaegiatid the change of the average
plaquette for vortex removed and randomly changed confiigis
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Figure 3: Dirac spectrum of a single configuration. It is shown for tinehlanged, (raw) configuration, the
same configuration with the vortices removed, and with ramdbanges applied to the raw configuration.

For our randomly changed configurations, we changed 1000 linkshwbizesponds to changing
1.2% of the links on a 12lattice.

Figure[3 shows the effect for a single configuration. As discussedkalive vortex removed
spectrum looks completely different. In contrast, the spectrum for thaoraly changed configu-
ration looks essentially like the original (raw) spectrum. In particular, theber of zero modes
did not change by the random changes. In Figlire 4 we show the distriftithe topological
charge for 100 configurations before and after random changesse@/that the overall shape of
the distribution did not change.

5. Conclusions and Outlook

We can conclude that removal of the vortices produces configuratiansetemble free fields.
These vortex removed fields are void of topological structures andl dyinametry is restored.
Applying random changes to the original configuration shows that thevarabvortices is indeed
a sensible method to probe the connection between vortex-like structudds@otogy. ForZ,
projected configurations the situation is different. In the casB,afonfigurations that have been
derived from thermalized configurations, the fermionic analysis doeyialat sensible results.
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Figure 4: This figure shows the distribution of the topological cha€yéor raw and randomly changed
configurations. Vortex removed configurations always Have0.

However, in the case of hand constructed vortices, analytic resultenaduced. Especially, the
low-lying, non-zero modes of the Dirac operator do feel the preseheertices, even for center
projected configurations. For a detailed discussion of hand construmtdigurations seg][6].

References

[1] T. Banks and A. Casheghiral symmetry breaking in confining theorjétucl. PhysB169 (1980) 103.

[2] H. Reinhardt, O. Schroeder, T. Tok, and V. C. ZhukovsByark zero modes in intersecting center
vortex gauge fieldhys. RevD66 (2002) 085004hep-t h/ 0203012

[3] M. F. Atiyah and I. M. SingerThe index of elliptic operators., BAnnals Math93 (1971) 139-149.

[4] M. Engelhardt and H. Reinhardfenter projection vortices in continuum Yang-Mills thedwycl.
Phys.B567 (2000) 249hep- t h/ 9907139.

[5] H. Reinhardt,Topology of center vorticedlucl. PhysB628 (2002) 133-16d)ep-t h/ 0112215,

[6] J. Gattnaret al,, Center vortices and Dirac eigenmodes in SU(2) lattice gahgery, Nucl. PhysB716
(2005) 105-127%ep- | at/ 0412032

[7] C. GattringerA new approach to Ginsparg-Wilson fermioR$ys. RevD63 (2001) 114501,
lhep-1 at / 0003005|.

[8] C. Gattringer, I. Hip, and C. B. Land\pproximate Ginsparg-Wilson fermions: A first tédticl. Phys.
B597 (2001) 451-474pep- | at / 0007042,

[9] P. de Forcrand and M. D’Eligdn the relevance of center vortices to QEhys. Rev. LetB82 (1999)
4582-4585hep- | at / 9901020,

301/6


http://www.arXiv.org/abs/hep-th/0203012
http://www.arXiv.org/abs/hep-th/9907139
http://www.arXiv.org/abs/hep-th/0112215
http://www.arXiv.org/abs/hep-lat/0412032
http://www.arXiv.org/abs/hep-lat/0003005
http://www.arXiv.org/abs/hep-lat/0007042
http://www.arXiv.org/abs/hep-lat/9901020

