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A systematic procedure is presented for connecting short to long scales in LGT. Approximate
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progressively coarser lattices. ForSU(2) IR flow into the confining strong coupling regime results

for any initial β .

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

∗Speaker.

P
o

S
(L

A
T

2
0

0
5

)3
1

1

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:tombouli@physics.ucla.edu


RG decimation-based approach to confinement E.T. Tomboulis

1. Introduction

As it is well-known, pure non-abelian gauge theory atT = 0 and space-time dimensiond≤ 4
possesses the extraordinary property of being in a single phase for all values of the bare gauge
coupling, 0< β < ∞. The theory exhibits passage from the short distance perturbative (ordered)
regime to a long distance confining (disordered) regime without encountering a phase transition.
Such multi-scale problems are notoriously difficult to treat from first principles. Another well-
known, and in fact somewhat similar example is the passage from laminar to turbulent flow in
hydrodynamics.

In principle such problems can be treated by some systematic block-spinning or decimation
procedure. Exact block-spinning schemes in gauge theories, however, so far appear intractable,
both analytically and numerically. There are, however, approximate but computable decimation
procedures that can provide bounds on judicially chosen quantities. Such bounds can then be used
to rigorously constrain the flow behavior of the exact theory [1] - [2]. The basic procedure followed
in this program is as follows:

(i) Devise decimation schemes such that at each decimation step one can obtain both an upper
and a lower bound for the partition function. Furthermore, the decimations should be explicitly
computable to any accuracy.

(ii) At each step interpolate between the upper and lower bound. Then the exact value of
partition partition function (free energy) is obtained at some particular value of the interpolating
parameter. This then gives arepresentationof the partition function on the decimated lattice [1].

(iii) The same procedure is then applied to the partition function in the presence of a ‘twist’
(external center flux).

(iv) Combining (ii) and (iii) allows consideration of appropriate long distance order parame-
ters: the vortex free energy, Wilson loop, and Wilson lines.

We will see that the flow into the IR regime of the exact theory can be extractedwithout
knowing the precise right numerical values of the extrapolation parameters that give the exact
representations at each decimation step.For SU(2), the only case explicitly considered here,the
result is flow into the strong coupling confinement regime for any initialβ . Furthermore, if these
right numerical values of the extrapolation parameters can be explicitly obtained, one can compute
appropriate quantities directly on coarser lattices.

2. Decimation and interpolation

Starting with some reflection positive plaquette action at lattice spacinga, e.g. the Wilson
actionAp(U) = β

N RetrUp, consider the character expansion of the action exponential:

F(U,a) = eAp(U) = ∑
j

d j Fj(β ,a)χ j(U) , (2.1)

For SU(2), one hasj = 0, 1
2,1, 3

2, . . ., d j = (2 j +1). It is convenient to work in terms of normalized
coefficients;

F(U,a) = F0

[
1+ ∑

j 6=0

c j(β )d j χ j(U)
]
≡ F0 f (U,a) . (2.2)
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The partition function on latticeΛ is then

ZΛ(β ) =
∫

dUΛ ∏
p

Fp(U,a) = F |Λ|
0

∫
dUΛ ∏

p
fp(U,a) . (2.3)

We employ decimation schemes of the ‘potential moving’ type. The lattice is split into hy-
percubes of side lengthλa, and plaquettes are moved from the interior of each hypercube to its
boundary, where plaquette interactions are appropriately adjusted to compensate for the move. The
process can be summarized as an explicit decimation rule for each step in successive decimations

a→ λa→ λ
2a→ ··· → λ

na ⇐⇒ Λ→ Λ(1) → Λ(2) → ··· → Λ(n) ,

which gives explicit expressions for the computation of the Fourier coefficients at the(m+ 1)-th
step given those of them-th step:

F0(m)→ F0(m+1) = F0(m,ζ , r,λ ,{ci(m)})

c j(m)→ c j(m+1) = c j(m,ζ , r,λ ,{ci(m)})

The rule for the decimation scheme we adopt, which need not be explicitly given here, involves
parametersζ , r which control the amount by which the interactions of the remaining plaquettes
after a decimation step are renormalized to compensate for the ones that were removed.

The resulting PF aftern decimation steps is then:

ZΛ(β ,n) =
n

∏
m=0

F0(m)|Λ|/λ md
∫

dUΛ(n) ∏
p

fp(U,n) . (2.4)

It is important to note that, after each decimation step, the resulting action retains the original
one-plaquette formbut will, in general, contain all representations:

fp(U,n) =
[

1+ ∑
j 6=0

c j(n)d j χ j(U)
]
≡ expAp(n) (2.5)

with
Ap(n) = ∑

j

β̃ j(β ,n)χ j(U) . (2.6)

Also, both positive and negative effective couplingsβ̃ j will, in general, occur.
The following two basic statements can now be proved. Going from then−1 step to then

decimation step one has:
(I) with ζ = λ d−2, r = 1− ε , 0≤ ε < 1 :

ZΛ(β ,n−1)≤ ZΛ(β ,n) ; (2.7)

(II) with ζ = 1, r = 1+ ε , 0≤ ε :

ZΛ(β ,n)≤ ZΛ(β ,n−1) . (2.8)

In fact, in both (I), (II) one has strict inequality at any finiteβ .
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Translation invariance, convexity of the free energy, and reflection positivity (positivity of
Fourier coefficients) underlie (I), (II).

We next interpolate between the upper and lower bounds. Introducing a parameterα, (0≤ α),
define interpolating coefficients ˜c j(n,α) andF̃0(n,α) such that

c̃ j(n,α) =

{
c j(n,ζ = λ d−2, r = 1− ε) : α = 1
c j(n,ζ = 1, r = 1+ ε) : α = 0

and similarly

F̃0(n,α) =

{
F0(n,ζ = λ d−2, r = 1− ε) : α = 1
F0(n,ζ = 1, r = 1+ ε) : α = 0

for 0≤ ε < 1. A variety of convenient explicit examples of such interpolating ˜c j(n,α), F̃0(n,α)
may be given. There is, of course, nothing unique about any one such smooth interpolation. Con-
sider more generally a family of smooth interpolations parametrized by a parametert in some
interval(t1, t2):

c̃ j(n,α, t) , F̃0(n,α, t)

Define the corresponding interpolating partition functionZ̃Λ(β ,n,α, t) by the replacement

F0(n)→ F̃0(n,α, t) , c j(n)→ c̃ j(n,α, t)

Then, for each fixedt, we have

Z̃Λ(β ,n,0, t)≤ ZΛ(β ,n−1)≤ Z̃Λ(β ,n,1, t) . (2.9)

But then,by continuity, there exist a value

0 < α = α
(n)
Λ (t) < 1

such that
Z̃Λ(β ,n,α

(n)
Λ (t), t) = ZΛ(β ,n−1) . (2.10)

In other words,α(n)
Λ (β , t) is the level surface (implicit function) solution to

Z̃Λ(β ,n,α, t) = ZΛ(β ,n−1) . (2.11)

There is thus ‘parametrization invariance’ in (2.10): shifts in t are compensated by changes in
α

(n)
Λ (β , t). This procedure of fixingα(n)

Λ (β , t) is iterated in successive decimations (n = 1,2, . . .).
So starting at the original spacinga, after the 1st decimation step the procedure givesan exact
representationon the coarser latticeΛ(1) of the original partition function onΛ in the form:

ZΛ(β ) = F |Λ|
0

∫
dUΛ ∏

p
fp(U,a)

= Z̃Λ(β ,α
(1)
Λ (t), t)

= F |Λ|
0 F̃0(α

(1)
Λ (t), t)|Λ|/λ d

∫
dUΛ(1) ∏

p
fp(U,α

(1)
Λ (t), t) . (2.12)

Since the resulting action in (2.12) is again of the same type (2.5), iteration of the procedure results
in a representation analogous to (2.12) on successively coarser latticesΛ(n).

Note that, by construction, the coefficients ˜c j , F̃0 evaluated atα(n)
Λ (t) occurring in (2.12) are

always sandwiched between the explicitly computable upper bound (α = 1) and lower bound (α =
0) coefficients.
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3. Twisted partition function – Vortex free-energy

The twisted partition functionZ(−)
Λ (β ) is defined as the partition function with ‘twisted’ action

on each plaquette of a coclosed setV of plaquettes winding around the periodic lattice in(d−2)
directions perpendicular to a given 2-plane. Thus on the dual latticeV forms a closed 2-dim
surface ind = 4, and a closed loop ind = 3. The ‘twist’ is a shift by a non-trivial elementτ ∈
Z(N) of the group center, and amounts to a discontinuous (singular) gauge transformation on the
configurations in the partition function with multivaluedness inZ(N), i.e. the introduction of a
π1(SU(N)/Z(N)) = Z(N) vortex.τ =−1 for SU(2).

The vortex free-energy order parameterF(−)
Λ is then defined as:

exp−F(−)
Λ =

Z(−)
Λ
ZΛ

. (3.1)

The behavior of the Wilson loop and Wilson line correlations can be related to (3.1) through known
inequalities.

There is a slight technical complication in applying the above procedure to the twisted partition
function. ForZ(−)

Λ reflection positivity holds only in planes perpendicular to the directions in which
the setV carrying the twist is winding around the lattice. One way to overcome this is to simply
replaceZ(−)

Λ by the quantityZΛ + Z(−)
Λ for which reflection positivity, as it is easily verified, is

restored in all planes. The above development then can be carried through in this case also.
Thus, e.g., after one decimation, one has theexact representationanalogous to (2.12):

ZΛ(β )+Z(−)
Λ (β ) = Z̃Λ

(
β ,α

+(1)
Λ (t), t

)
+ Z̃(−)

Λ

(
β ,α

+(1)
Λ (t), t

)
. (3.2)

One may then iterate the procedure in successive decimation steps.
It should be noted that, as indicated by the notation, theα

+(1)
Λ (t) in (3.2) are fixed indepen-

dently of and hence a priori can be distinct from theα
(1)
Λ (t) occurring in the representation (2.12)

for the partition functionZΛ(β ). The same of course is true for each subsequent iteration.
Consider now using these exact representations for computing the vortex free-energy (3.1).

After one decimation, using (3.2), one has:(
1+

Z(−)
Λ
ZΛ

)
=

ZΛ +Z(−)
Λ

ZΛ
=

Z̃Λ

(
β ,α

+(1)
Λ (t), t

)
+ Z̃(−)

Λ

(
β ,α

+(1)
Λ (t), t

)
ZΛ

(3.3)

=
Z̃Λ

(
α

+(1)
Λ (t), t

)
ZΛ

[
1+

Z̃(−)
Λ

(
α

+(1)
Λ (t), t

)
Z̃Λ

(
α

+(1)
Λ (t), t

) ] . (3.4)

By construction, the numerator in (3.3) is invariant under shifts int; but the two factors in which it
is split in (3.4) arenot individually invariant. (They would be, by (2.12), only if α

+(1)
Λ (t) were to

exactly coincide withα(1)
Λ (t) for all t.)

One now finds that there exist a valuet = t∗ at whichZ̃Λ

(
α

+(1)
Λ (t), t

)
intersects the level curve

ZΛ = Z̃Λ

(
α

(1)
Λ (t), t

)
, i.e.

Z̃Λ

(
α

+(1)
Λ (t∗), t∗

)
= ZΛ = Z̃Λ

(
α

(1)
Λ (t), t

)
.
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Thus

1+
Z(−)

Λ
ZΛ

= 1+
Z̃(−)

Λ

(
α

+(1)
Λ (t∗), t∗

)
Z̃Λ

(
α

+(1)
Λ (t∗), t∗

) . (3.5)

(3.5) may then be iterated in successive decimation steps. Now, by construction, the coefficients
c̃ j(n,α

+(n)
Λ (t)), F̃0(n,α

+(n)
Λ (t), t) are sandwiched between the upper bound (α = 1) and lower

bound (α = 0) coefficients which, for the potential-moving type of decimations employed here,
are explicitly computable. In particular, the upper bound ones are essentially those of a Migdal-
Kadanoff decimation. ForSU(2) this implies flow of the effective action in (3.5) into the strong
coupling regime, hence confining behavior for the order parameter, for any initialβ . Decima-
tions need only be carried out till the strong coupling regime is reached. From that point onward,
computations can be performed within the convergent strong coupling cluster expansion.

4. Conclusion – Outlook

The iterated procedure of decimation followed by interpolation between computable upper and
lower bounds allows one to constrain and hence follow the qualitative RG flow of the exact theory.
This is possible without knowledge of the precise numerical values of the extrapolation parameters
(the α

(n)
Λ ’s) needed to give the exact representation of the physical quantity (partition functions,

vortex free energy, etc) considered. ForSU(2), the case explicitly treated, this suffices to extract
IR flow into the strong coupling confinement regime for any initialβ .

The derivations above only ascertain, within upper and lower bounds, the existence of appro-
priate values (theα(n)’s) for the interpolating parameters reproducing a given physical quantity on
successively coarser lattices. If these exact numerical values of the extrapolation parameters can
be obtained, one can compute this quantity directly on coarser lattices. An advantage of the above
development is that the general form of the effective action entering at each step is determined (eq.
(2.5)), and only the numerical coefficients (effective couplings) are to be determined. Algorithms
for doing this, involving an improved microcanonical demon technique, are under development in
collaboration with A. Velytsky.
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