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of one gauge group coincide with those of another gauge group. This simple ’unification’ con-

straint has deep consequences, the best known of which is a natural explanation of the fractional

electric charge of quarks. Here we explore the consequences of this idea for the phase diagram,

in a toy modelU(1)×U(1).
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1. Introduction

A while ago we measured in pureSU(2) gauge theory the temperature behaviour of the free
energy of various types of center vortices. Using ’t Hooft’s twisted b.c.’s we studied ratios of parti-
tion functions with an odd number of center vortices piercing the various planes of a 4-dimensional
Euclidean1/T×L3 box relative to the periodic ensemble. Qualitatively, at low temperatures, cen-
ter vortices can spread to lower their free energy. Their proliferation disorders the Wilson loop
and leads to confinement. As the temperature is increased vortices through the temporal1/T×L
planes are squeezed more and more. They can no-longer spread arbitrarily and this is what drives
the phase transition. In the thermodynamic limit, their free energy approaches zero (infinity) forT
below (above)Tc [1, 2, 3]. In the high temperature phase, macroscopic regions of Polyakov loops
of a definite center sector appear, which are separated by interfaces whose tension suppresses these
types of vortices leading to a dual area law for the spatial ’t Hooft loops in the high temperature
phase [4]. A Kramers–Wannier duality is observed nicely in comparing the behaviour of these
vortices with that of the electric fluxes which yield free energies of static charges in a well-defined
(UV-regular) way [5], with boundary conditions to mimic the presence of ’mirror’ (anti)charges in
neighbouring boxes. This duality follows that between the Wilson loops of the 3dZZ2-gauge theory
(the universal partners of the spatial ’t Hooft loops inSU(2)) and the 3d-Ising spins, reflecting the
different realisations of the 3-dimensionalelectric center symmetryin both phases. Universality
is seen at work in an impressively large scaling window around criticality [2, 6]. While the elec-
tric (fluxes)twists provide well-defined (dis)order parameters for confinement, the free energy of
the magnetic ones vanishes exponentially at allT in the thermodynamic limit. The corresponding
screening of temporal ’t Hooft loops is determined by the spatial string tension [7]. Combina-
tions of electric and magnetic twists can however be used to measure the topological susceptibility
without cooling [8].

While the techniques can be extended to compute interface tensions forSU(N) with N≥ 3 and
phase coexistence [9], the nagging question remains as to what the significance is of these quali-
tatively and quantitatively quite compelling results when dynamical quarks with their fundamental
charges are included. Even in presence of quite heavy dynamical quarks the picture becomes rather
murky. Upon encircling an interface (which is a line-defect in 3 dimensions) they pick up a non-
trivial phase corresponding to their fundamental charge. This multivaluedness thus seems to have a
dramatic effect on the dynamics of the same topological defects that appear to describe the phases
of the pure gauge theory so beautifully. Should it be true that the phase structure changes abruptly
when going from infinitely heavy to no-matter-how-large but finite quark masses? At least it would
seem rather unnatural to assume that there are entirely different mechanisms in either case, which
nevertheless lead to a smooth limit.

In the next section we briefly discuss a tantalising possibility for the coexistence of quarks and
interfaces by simple unification constraints in theories with several gauge groups as inSU(3)×
U(1). In Section 3 we explore this same idea in a toy modelU(1)×U(1). The considerable
consequences of defect unification as exemplified in the toy model are discussed in our conclusions.
The idea of unification constraints for topological defects, which might arise quite naturally from
grand unified theories, with topological defects such as e.g. theSU(5) monopole [10], is not new
but certainly deserves renewed interest and further study.
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2. Quarks and Interfaces

The problem with quarks and interfaces arises because a center-vortex sheet, which can be
moved freely in the pure gauge ensemble, now becomes observable. Technically, with fundamental
fields there are no twisted boundary conditions to measure vortex free energies in the first place.
One way out of this dilemma might be provided by combiningSU(3) with U(1) defects, realising
that quarks have fractional electric charges and interact with both gluons and photons. As pointed
out by Creutz in his last year’s Lattice proceedings [11], there is a remarkable phase cancellation
when quarks encircle a combinedZZ3 and Dirac string. This is due to their fractional electric charges
and makes such combined strings unobservable.

In particular, upon encircling aZZ3 string, quarks pick up phases ofei2π/3 or ei4π/3 depending
on the kind of string (i.e. interface in 4d). On the other hand, depending on their fractional electric
charges,2/3 or −1/3 in units of e, these two phases can add to produce multiples of2π for
the combined string. In particular, independently of the quark’s flavour this phase cancellation
happens for the first type ofZZ3 string whenever the accompanying Dirac flux ism= 1 mod3 (in
units of 2π/e), while for the second it requiresm = −1 mod3 (one easily verifies that all other
combinations lead to non-integer fractions of2π for the total phases of quarks with either charge).

Thus, if we combine in this waySU(3) ’t Hooft with U(1) monopole loops, and the respective
center-vortex/Dirac sheets spanned by the two, the dynamics of the so combined defects might
allow to smoothly connect quark confinement to that of static fundamental charges in the pure
gauge theory. Of course, the defect-unification constraint induces a coupling between the two
gauge groups. The dynamics of the formation/suppression of one kind of defect is now tied to the
other. We will explore this effect in a toy model.

3. Toy Model

Consider the 4d compact pure Abelian gauge theory with Wilson action for the gauge group
U(1)×U(1),

S = −β1∑
P

cosθ (1)
P −β2∑

P

cosθ (2)
P , (3.1)

with two couplingsβi = 1/e2
i and plaquette anglesθ (i)

P , i = 1,2. Without any constraints the phases
are trivially determined by the 2 independentU(1) factors. The phase transitions atβc just above
1 can be seen in the monopole densities, the string tension and thehelicity modulus[12] yielding
the phase diagram as sketched in Fig.1. Especially the (temporal) helicity modulus has recently
reemerged as a suitable and convenient order parameter for compactU(1) [13]. It measures the
susceptibility of the theory to static external fluxes and plays a role analogous to that of fluxes by
twisted boundary conditions, albeit being more easily amenable to simulations.

The picture changes considerably when the twoU(1) factors are constrained to always have
the same monopole content. This is achieved as follows: We start with identical copies of gauge
field configurations for bothU(1)’s. We then propose independent small variations for each link
of the two gauge fields a la Metropolis. In addition to the usual probability by the Wilson action
the monopole currents in bothU(1)’s must however also remain the same for the updates to be
accepted, though they may both be changed of course in each step (the step size is chosen to
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Figure 1: Without constraint the monopole density (upper left), string tension and helicity modulus (right)
of 4d compactU(1) hold for each factor implying the 4 phases in the(β1,β2)-plane as sketched (left).

achieve an acceptance rate of about 50%). This is controlled by comparing the units of magnetic
chargem in the cubes sharing the updated links.

The phase diagram now changes dramatically as seen in Fig.2. One large enoughβ (small
coupling) suffices to suppress the monopoles in bothU(1) groups, no matter how strong the second
coupling is. We are left with only 2 phases, the same for bothU(1)’s, and the mixed phases no-
longer exist. The transition occurs at somewhat smaller values ofβ ; we roughly estimate0.39
along the diagonalβ1 = β2 and 0.62 near the axes where one of the twoβ ’s approaches zero.
A precise determination remains to do be done, however. Both string tensions (not shown here)
are the same also forβ1 6= β2 and vanish at the transition line in the two coupling plane. These
correspond however to Wilson loops of charges(1,0) and(0,1) (in units ofe).

More interesting for our purposes are the half-odd integer cases(1/2,±1/2) which can exist
in U(1)×U(1) with monopole unification constraint because of the same phase cancellation as
described in Sec. 2. Instead of a direct measurement of the corresponding Wilson loops, here we
present preliminary results for the helicity moduli which mimic the response to the presence of
static charges. In presence of constant (homogeneous) fluxesφ (i) through a(µ,ν)-plane (of size
LµLν ), the action of eachU(1) factor is modified for all plaquettesP(µ,ν) with (µ,ν)-orientation,

Si(φ (i)) =−βi ∑
P∈{P(µ ,ν)}

cos
(
θ (i)

P + φ (i)
/(LµLν)

)−βi ∑
P6∈{P(µ,ν)}

cosθ (i)
P , i = 1, 2 . (3.2)

Since the fluxes of both factors are independent, the helicity modulus defined as the curvature of
the free energy at vanishing flux now has 3 independent components according to the Hessian

H(β1,β2) =

(
∂ 2F(φ (1),φ (2))

∂φ (i)∂φ ( j)

∣∣∣∣
0

)
. (3.3)

The diagonal components are the susceptibilities of the coupled theory to flux in one of the two
U(1) factors alone. Their behaviour should reflect that of the(1,0) and(0,1) Wilson loops. For
objects equally(oppositely) charged w.r.t. both, we need the curvature of free energy in the(1,±1)
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Figure 2: Monopole density
(relative number of cubes
with m 6= 0) and transition
line estimate in the 2 cou-
pling plane ofU(1)×U(1)
with monopole unification
constraint (on a124 lattice).
The relatively small proba-
bility of having a monopole
in any given cube is further
reduced in the constrained
case, and the transition to
the confined phase is thus
shifted towards the origin in
the(β1,β2)-plane.

directions corresponding to helicity modulih± = H11+H22±2H12,

h±(β1,β2) =
1

(LµLν)2

{
∑

i=1,2

(〈
βi ∑
P∈{P(µ,ν)}

cosθ (i)
P

〉
−

〈(
βi ∑
P∈{P(µ,ν)}

sinθ (i)
P

)2〉)
(3.4)

∓2
〈(

β1 ∑
P∈{P(µ,ν)}

sinθ (1)
P

)(
β2 ∑
P∈{P(µ,ν)}

sinθ (2)
P )

)〉}
.

Near the transition line we observe a drop of about 50% for the helicity modulus in(1,0), (0,1),
i.e. for flux in just one of theU(1)’s. Contrary to the unconstrained case, however, it does not
drop to zero on the strong coupling side as seen forβ1 = β2 in Fig. 3. Our preliminary data
on h±(β1,β2) indicates, however, that this is due to the very different behaviour of equal versus
opposite fluxes. Presumably, fields with equal electric charges in bothU(1)’s are confined by the
condensation of the unified monopoles, while oppositely charged ones are not. This would open
further interesting possibilities. One might ask for instance, what happens if we relax the constraint
to include oppositely charged±m magnetic monopoles sitting on top of each other? Would that
confine the opposite electric charges together with the equal ones?

4. Conclusions

Our toy model serves to demonstrate that in theories with several gauge groups it can be
deceiving to study the individual factors separately, especially when there are mechanisms by which
the defects of one gauge group are forced to coincide with those of another. Such unification
constraints have been suggested to arise naturally from grand unified theories and might manifest
themselves in the presence of fundamental fields such as quarks in QCD or other particles with
fractional charges in several gauge groups. It appears to be worthwhile to explore the idea of defect
unification in other models such as a double Abelian Higgs model with fractional charges, or revisit
SU(2)×U(1) with fundamental Higgs fields in the light of defect-unification constraints.

Another interesting property of the toy modelU(1)×U(1) is its capacity to confine equal
charge doublets whereas oppositely charged ones do not see the unified monopoles but only the
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Figure 3: Susceptibility to flux in
one of the twoU(1) factors with
monopole-unification forβ1 = β2

(on a124 lattice). Preliminary data
for equal and opposite fluxes (the
helicity moduli in (1,±1) direc-
tions) in the strong coupling regime
are also shown indicating alevel
splitting. A precise analysis, a study
of their transition behaviour and of
finite-size effects are yet to be done.
However, this is is a first sign of the
different behaviour of states with
equal and opposite charges in both
gauge groups (which may each be
half-odd integer).

topologically trivial gauge field fluctuations, and thus retain a Coulomb-like behaviour at any cou-
pling. At least, our preliminary data on the corresponding helicity moduli is fully consistent with
what one expects for such a behaviour. A more quantitative analysis is under way.

Finally, and maybe most importantly, however, one should probably address such questions
as: What kind of constraints can we get from defects in grand unified theories, and what do we
need to confine quarks but not electrons?
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