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1. Introduction

There are several methods to evaluate the topological susceptibility χ in pure Yang–Mills
theory on the lattice. Extracting this quantity for the SU(3) gauge theory is crucial to understand
the large mass of the η ′ meson in QCD [1, 2].

Some of the lastest results for χ 1/4 obtained on the lattice are: 177(7) MeV by using cool-
ing [3], 184(7) MeV by using cooling rounding the results to the closest integer [3], 191(5) MeV
by counting fermionic zero modes [4] and 173.4(0.5)(1.2) MeV by the field–theoretical (or Pisa)
method [5] (in this last number the statistical error and the error derived from the determination of
the scale ΛL are shown separately).

Any comparison among these methods requires a good control of all sources of possible sys-
tematic errors. We present a progress report on a study about the systematic errors that are origi-
nated in the evaluation of multiplicative and additive renormalization constants that appear in the
expression of the physical topological susceptibility χ in terms of the lattice one χL. This relation-
ship is [6, 7, 8]

χL = Z2a4χ +M , (1.1)

where Z and M are multiplicative and additive renormalization constants respectively. To extract χ
one has to know the value of Z(β ) and M(β ) where β = 6/g2, g being the bare coupling constant.
The lattice spacing a(β ) depends on the coupling β in a way dictated by the lattice beta function.

The lattice susceptibility χL is calculated by using the definition

χL ≡

〈

(

Q(1)
L

)2
〉

L4 , (1.2)

where L4 is the spacetime volume and Q(1)
L is the 1–smeared topological charge [9].

2. Calculation of the renormalization constants

The renormalization constants Z and M are evaluated by using the heating method [10, 11].
Following the meaning of Z [7, 8], we compute the average topological charge within a fixed
topological sector. If we choose a topological sector of charge n (any nonzero integer) then

Z =

〈

Q(1)
L

〉∣

∣

∣

Q=n

n
, (2.1)

where the division by n entails the requirement that Q takes integer values (Q here is defined by
cooling). The brackets 〈·〉|Q=n mean thermalization within the topological sector of charge n.

We start our algorithm with a classical configuration with topological charge 1 (Q = 1) and
action 8π2 in appropriate units.1 Then we apply 80 heat–bath steps of Cabibbo–Marinari updat-
ing [12] and measure Q(1)

L every 4 steps. This set of 20 measurements is called “trajectory”. After

1The numerical values of Q and the action have been calculated by using Q(1)
L and the Wilson pure gauge action [13]

on a cooled 1–instanton configuration. The actual numbers turn out to be not exactly 1 and 8π2 but very close to them.
The differences vanish in the thermodynamic limit.
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Figure 1: Histogram of background topological charge on all configurations obtained during a calculation
of Z(β = 6.0) on a 164 lattice.

each measurement we apply 8 cooling steps to verify that the topological sector is not changed.
We repeat this procedure to obtain a number of trajectories. For each trajectory we always discard
the first few measurements because the configuration is not yet thermalized. Averaging over the
thermalized steps (as long as the corresponding cooled configuration shows the correct background
topological charge, Q = 1 within a deviation δ ) yields

〈

Q(1)
L

〉
∣

∣

∣

Q=1
. We estimate the systematic

error that stems from the choice of δ as in [11].

As for the additive renormalization constant M the procedure is quite analogous. We calculate

M = χL|Q=0 ≡

〈

(

Q(1)
L

)2
〉

∣

∣

∣

∣

∣

Q=0

/L4 in the zero topological charge sector (because within this sector

the physical topological susceptibility χ vanishes). Single trajectories consist again of 80 heat–bath
steps with measurements every 4 steps and cooling tests after each measurement. Thermalization
of short distance fluctuations again requires discarding a few initial steps.

When a cooling test reveals that the corresponding configuration lies outside the correct topo-
logical sector (Q = 0 for the calculation of M and Q = 1 for Z) then all points of the trajectory are
discarded from that configuration onwards. In full QCD this event seldom happens [14, 15]; we
work however in pure Yang–Mills theory where it happens more frequently.

An histogram containing the results of all cooling tests during a calculation of Z(β = 6.0)

is shown in Fig. 1. It has been drawn from the set of all configurations measured within 25000
trajectories: 25000×20 = 5 105 configurations. It is clear that in some cases the topological sector
has moved towards topological charges different from +1. This occurs in the 30% of all cases.
Notice that the histogram is slanted: there are more configurations moving towards Q = 0 than
towards Q = +2 because the system tends to equilibrate around Q = 0. Therefore if configurations
within the wrong topological sector were not discarded, we would obtain a biased value for Z
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(lower than the correct one).
When the additive renormalization M is calculated, all configurations should lie in the Q = 0

sector. If configurations that migrated outside this sector were not eliminated, the outcome for M
would be larger than the correct one as any departure from zero increases M because it is propor-
tional to the square of Q(1)

L .
However the use of cooling to unravel the topological sector of a configuration may also de-

stroy the unwanted instantons that alter the correct sector. In such a case we could not be able to
discover that we are calculating the renormalization constants on wrong topological backgrounds.
This problem comes about when the unwanted instanton is small and few cooling steps can destroy
it rather easily. As described above, this circumstance distorts the extraction of Z and M, yielding
values for these constants that are lower (Z) or larger (M) than the correct ones. This is the source
of systematic error that we want to quantify by checking the background topological charge by
using a method different from cooling.

The counting of fermionic zero modes is a method to perform this check without modifying
the configuration. Unfortunately it is much more demanding than cooling for quantifying the above
described systematic effect.

3. Zero modes counting checks

The net number of zero modes n+ − n− is obtained by counting the level crossings in the
spectrum of the Wilson–Dirac operator as the fermion mass m varies [16, 17, 18]. This method
was used in [18, 19] to calculate the topological charge. We use an accelerated conjugate gradient
algorithm [20] to extract the lowest eigenvalues of the Wilson–Dirac operator.

This technique looks ambiguous because there can be level crossings all along the interval of
masses where the gap is closed. If we stop counting crossings at some mass inside the interval,
in general the resulting topological charge depends on the choice of this mass. It is shown [18]
that physical results do not depend strongly on the choice of this mass. In particular, instantons
representing crossings that are close to am = 2 (the endpoint of allowed masses) have a size of a
few lattice spacings. These are precisely the instantons that most probably could evade the cooling
test. Therefore we show results for am = 2.

We want to calculate both M and Z at some fixed value of the lattice coupling β . The topolog-
ical charge background will be checked both by cooling and by counting of fermionic zero modes
and the final results compared. Any difference between these final results can be interpreted as an
estimate of the systematic error. At this writing we have completed 50 trajectories for M at β = 6.0
on a 124 lattice for the quenched SU(3) theory. We show the partial results deduced from this
limited set of trajectories. In Fig. 2 the average among trajectories is shown for the two methods
of checking. As for the cooling, the configuration was considered as belonging to the right sector
Q = 0 within a deviation |δ |= 0.3. We show only data after the 16th heat–bath step (previous steps
are irrelevant because the quantum fluctuations are not yet thermalized). The points in grey color
are the average of all data in all trajectories. They are

Mcooling = 0.66(4) 10−5 , Mfermionic = 0.72(4) 10−5 . (3.1)
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Figure 2: Average on a set of 50 trajectories for the calculation of M by using both cooling (circles) and
fermionic level crossing counting (triangles) as checks of the topological background. The level cross count-
ing stopped at am = 2.

In Fig. 3 the number of configurations used for the average in Fig. 2 at each step is displayed.
Ideally the number of configurations should be 50, however due to the discarding of configurations
with a wrong topological charge background, this number decreases as a function of the step.
Notice that this decrease is steeper for the cooling although it is supposed that some instantons
escape the cooling check while they should be netted by the counting of zero modes (mainly with
the stopping mass fixed at am = 2). The plot depends little on the choice of δ , (δ = 0.1 or 0.5 yield
similar data). The fact that the result for M obtained with cooling (see (3.1)) tends to be lower than
the results obtained by counting zero modes seems to indicate a better performance of cooling in
discovering wrong charge configurations. However our error bars are still too large to be able to
draw any clean conclusions from the data. We plan to improve the statistics roughly by one order
of magnitude both for M and Z.
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Figure 3: Number of configurations used for the average in Fig. 3 as a function of the heat–bath step for
cooling checks (straight line) and fermionic level crossing counting (dashed line).
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