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The topology conserving gauge action proposed by Lüscher isexpected to reduce the number of

non-smooth gauge configurations as well as the topology change compared to the conventional

actions for the same lattice spacings. We report our quenched QCD study of the topological

stability and the scaling violation of the static quark potential. We find that the the topology

change is indeed suppressed when the parameterε is of order one. We also find that the scaling

violation in the static quark potential remain reasonably small in the parameter range of our study.

Our study is done at the inverse lattice spacinga−1 = 1.4–2.5 GeV with the lattice sizeL = 1.0–

1.6 fm.
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1. Introduction

The admissibility condition of the gauge fields on the lattice [1, 2]

||1−Pµν(x)|| < ε for all x, µ , ν , (1.1)

guarantees the locality and the uniqueness of the index of the overlap-Dirac operator. [3, 4]. As an
example, the gauge action which restricts the gauge field to satisfy the bound (1.1)

SG = β ∑
P

1−ReTrPµν(x)/3

1− (1−ReTrPµν(x)/3)/ε
, (1.2)

was proposed by Lüescher [1]. This action may be useful for QCD simulations in two reasons: (1)
it may serve to efficiently collect gauge configurations withfixed topologyQ 6= 0 in theε-regime,
(2) it may give a possibility to reduce the numerical cost of dynamical overlap fermions with fewer
low-lying modes ofHW and less frequent topology change. In fact, this action has been proven to
be useful for the massive Schwinger model for stabilizing the topological charge and for improving
the chiral behavior of the domain wall fermions [5, 6]. Also in the four-dimensional quenched
QCD, the good stability of the topological charge has been observed with some reasonable choices
of parameters [7, 8, 9]. See also [10].

In this report we present our quenched study of the topology conserving gauge action (1.2) on
the stability of the topology and the scaling. Studies on thelow-mode distribution in quenched and
dynamical QCD are reported by Matsufuru [11].

2. Lattice setup

In our study, we take three values of 1/ε (= 0, 2/3, and 1) with three lattice sizes 124, 164, and
204 and four lattice spacings in the rangea−1 = 1.4–2.5 GeV. Here, 1/ε = 0 corresponds to the
conventional plaquette action and 1/ε = 2/3 is the boundary, below which, all gauge configurations
are allowed when the gauge group isSU(3). Link variables are generated by the standard hybrid
Monte Carlo algorithm with∆τ = 0.01–0.02 andNmds = 20–40, whereNmds is the number of
molecular dynamics steps and∆τ denotes its step-size. We accumulated at least 2,000 trajectories
for thermalization before measuring observables. We monitored the plaquette values of the gauge
fields, but we did observe any case where the admissibility condition is violated through the hybrid
Monte Carlo updates.

3. Stability of the topological charge

In order to measure the topological charge, we developed a new cooling method, in which we
carry out the hybrid Monte Carlo simulation using the topology conserving action with an expo-
nentially increasing couplingβ = βcool and an exponentially decreasing step size∆τ as functions of
trajectorynt . After 50–200 steps, the gauge fields are expected to be cooled down close to the clas-
sical background in each topological sector. In fact, the geometrical definition of the topological
charge [12]

Qgeo≡
1

32π2 ∑
x

ε µνρσReTr
(

Pµν(x)Pρσ (x)
)

(3.1)
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Figure 1: Stability of the topological charge (3.1) for each parameter set. Results are plotted as a function
of lattice spacing squared. Three values of 1/ε are distinguished by lines: 0 (dotted), 2/3 (dashed), 1 (solid).
Circles, squares, and up-triangles correspond to lattice sizes 12, 16 and 20, respectively. The down-triangles
are from [8].

of these “cooled” configurations gives numbers close to an integer.
Figure 1 shows the stability of the topological charge defined as

StabQ ≡
Ntrj

τplaq×#Q
, (3.2)

whereτplaq is the autocorrelation time of the plaquette, measured by the method in Appendix E
of [13], Ntrj denotes the number of trajectories and #Q is the number of topology changes. Since
the topological charge is measured every 10–20 trajectories, StabQ gives only an upper limit. Our
results show that the topological charge becomes more stable for higher 1/ε , smallerL and smaller
a.

4. Static quark potential

We calculate the static quark potentialV(~r) from the Wilson loopsW(~r , t) for every 20 trajec-
tories. The spatial side~r is taken to be in 6 different directions of the 3-dimensionalunit vectors:~u
= (1,0,0), (1,1,0), (2,1,0), (1,1,1), (2,1,1), (2,2,1). Wecalculate the Sommer scalesr0 andrc defined
asr2

0F(r0) = 1.65 andr2
cF(rc) = 0.65, respectively [14, 15].F is the force obtained from the static

quark potential. We choose aQ= 0 configuration for the initial condition of HMC steps and do not
take care of the topological charge hysteresis assuming that the topology of the gauge fields would
not affect the Wilson loops if they are small enough.

Figure 2 shows the scaling ofrc/r0. One can see that they agree well with the results with the
plaquette action and its continuum limit [15] in the region(a/r0)

2 . 0.08. Also, as seen in Figure 3
for long distances, the quark potential itselfV̂(~r) = r0(V(~r)−V(rc)) does show a good agreement
with that in the continuum limit obtained with the plaquetteaction [15]. Here,V(rc) is measured
using an interpolation polynomial of order 5. For short distances, they show 10–20% deviations
due to the violation of the rotational symmetry but the discrepancies are comparable to those with
the plaquette action.
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Figure 2: Scaling ofrc/r0. Squares and triangles are data for 1/ε = 2/3 and for 1, respectively. Open
circles are the result with the plaquette action in [15], while the filled circle denotes their continuum limit.
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Figure 3: Left: heavy quark potential atβ = 1.3, 1/ε = 1.0 on a 124 lattice. Dashed line shows the
continuum limit obtained by an interpolation from the result of [15]. Different symbols show theV(~r)’s
with different orientations parallel to~u’s. Right: (V̂(~r)− V̂cont(~r))/V̂cont(~r), whereV̂cont(~r) represents the
continuum limit. The error of̂Vcont(~r) is ignored (. 1%).

We conclude that the heavy quark potential for the admissible gauge fields is quite similar with
that of the plaquette action and no serious inconsistency can be found.

5. Perturbative renormalization of the coupling

Ellis and Martinelli computed the two-loop corrections to the gauge coupling for general gauge
actions which can be written by the plaquette [16]. Using their formula, the renormalized gauge
coupinggM in the so-called Manton scheme is expressed by the bare coupling g0 as

1

g2
M(1/a)

=
1

g2
0

+A1+A2g
2
0, (5.1)

where(A1,A2) = (−0.2083,−0.03056), (0.34722,−0.04783), and (0.625,−0.10276) for 1/ε = 0,
2/3, and 1, respectively. In Figure 4 we plot the inverse squared coupling in the Manton scheme at
a reference scaleµ ≡ 5/r0 as a function of the lattice spacing. Here, we use the one-loop formula
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Figure 4: 1/g2
M(5/r0) in the Manton scheme as a function of lattice spacing squared. Results for various

1/ε andr0 are plotted. The bare coupling 1/g2
0 is also shown by open symbols for comparison.

in (5.1) for the change of scheme and two-loop renormalization group equation for the evolution
to the reference scale. We find that the renormalized coupling for various values of 1/ε shows a
good agreement, which means that the change of 1/ε is well described by the perturbation theory.
One can also see that the scaling violation is small for the renormalized coupling. However, we
note that the two-loop result gives larger corrections for larger 1/ε so that the convergence of the
perturbative series are poor for 1/ε = 1 and marginal for 1/ε = 2/3.

6. Summary

We studied the topology conserving gauge action in the quenched approximation for various
values ofβ , 1/ε and the lattice size. By measuring the topological charge with a new cooling
method, we find that the stability of the topological charge is improved for larger 1/ε when com-
pared at a same lattice spacing and lattice size. Measuring also the static quark potential and the
Sommer scalesr0, rc, the scaling violation are found to be small. Our study showsthat the topology
conserving gauge action is feasible for QCD simulations. Practical applications of this action such
as QCD inε-regime and simulations with dynamical overlap fermions are underway.
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