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We point out that the global symmetries of the Yang-Mills theory in the Landau gauge support

existence of variables similar to director fields in liquid crystal systems. We discuss two differ-

ent types of the liquid crystal variables associated with the group of global Euclidean rotations

and with a residual global group of color transformations. These global symmetries allow to

identify various topological defects which resemble, in particular, vortex-like disclination defects

and monopole-like objects in nematic liquid crystals. We suggest that the deconfinement phase

transition in the Yang-Mills theory may be associated with a phase transition in a liquid crystal.
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1. Introduction

Confinement of color is one of the most important problems in the modern quantum field
theory. The confinement is certainly caused by a complicated non-perturbative dynamics of the
gluon fields. There are various proposals to identity gluon field configurations which are relevant
for confinement. The relevant gluon fields can be associated either with particular topological de-
fects [1, 2] or with specific non-topological, stochastic or classical configurations [3]. The popular
approaches which are based on the topological defects include the dual superconductor [1] and
center vortex [2] mechanisms. The first approach suggests that the relevant gluon configurations
resemble the Abelian monopoles in particular Abelian gauge(s) of the Yang-Mills (YM) theory
while the second approach utilizes the vortex-like defects associated with the center of the color
group in a Center gauge. The gauge fixing is required in both cases since the pure YM theory does
not contain the topologically stable monopole– and vortex–like configurations.

Among other gauges, the Landau gauge is one of the simplest, very well-studied and smooth
gauges. Recently, attempts to approach the confinement problem in terms of particular gluon con-
figurations in this gauge were made in Ref. [4, 5, 6, 7]. It was shown numerically [4] that in the
Landau gauge the formation of the confining string is caused by magnetic displacement currents.
Moreover, a particular structure of the YM string in the Landau gauge allowed authors of Ref. [5]
to make a relation between the string and an Abrikosov vortex in a particular type of an ordinary
superconductor.

In Ref. [6] the YM theory in the Landau gauge is reformulated as a nematic liquid crystal [8]
(LC) in an internal space-time. The approach of Ref. [6] is based on the spin–charge separation
idea [9] which is well known in theories of high-Tc cuprate superconductors [10]. Another way [7]
to make a link between the YM theory and the nematic LC is to use (residual) global gauge sym-
metry, which remains unfixed after the Landau gauge is imposed. Below we describe examples of
the LC variables in the Euclidean SU(2) Yang-Mills theory, and discuss a possible role of the LC
variables in the dynamics of the system.

2. Two types of nematic liquid crystals in SU(2) Yang-Mills theory

2.1 An example of realization of the liquid crystal variables in color

A color realization of a liquid crystal in the Yang-Mills theory should be done in a gauge
which fixes the gauge (local) color freedom while leaving a particular global (sub)group of the
gauge group intact. The unfixed global group should be isomorphic to the group of rotations of a
Euclidean space. This group is to be associated with the group of rotations of the director field in
the color realization of the liquid crystal.

The simplest example of the gauge with the described properties is the Landau gauge which is
formulated via the minimization of the gauge fixing functional,

min
Ω

F [AΩ] , F [A] =
∫

d4x
[
Aa

µ(x)
]2

, Ω ∈ SO(3)gauge, (2.1)

over the gauge transformationsΩ. Since the gluon field is not sensitive to the centerZZ2 of the
gauge groupSU(2), the gauge symmetry isSO(3) ∼ SU(2)/ZZ2. The gauge condition (2.1) fixes
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the gauge color freedom up to the global color group,SO(3)gauge→SO(3)global, because the gauge-
fixing functional F [A] and its local counterpart,∂µAa

µ = 0, are both invariant under the global
(coordinate-independent) transformations,Aa

µ(x)→Ωab
gl Ab

µ(x), with Ωgl ∈ SO(3)global.
Following Ref. [7] we construct the composite color-spin field

Cab(x) = Ac
µ(x)Ac

µ(x) ·δ ab−Aa
µ(x)Ab

µ(x) [color realization], (2.2)

which is a scalar and a rank-2 symmetric tensor with respect to, correspondingly, space-time rota-
tions and the global color transformations. The definition (2.2) is similar to the moment of inertia
tensor of a body composed of mass-points (labelled by the integern) with the massesmn located at
the positionsrn:

I i j = ∑
n

mn(r2
n δ i j − r i

nr j
n) . (2.3)

At each pointx of the space-time the matrixCab, Eq. (2.2), corresponds to the “moment of inertia
tensor” of a “solid body” consisting of four mass-centers with equal “masses”m1 = 1, µ = 1, . . . ,4.
The gauge fieldAa

µ plays a role of a “coordinate” of theµ th mass-center, and the color indicesa
andb play roles of the coordinate indices (analogues ofi and j in Eq. (2.3)). Under the global
color transformationsΩgl the matrixC transforms in the adjoint representation,C(x)→ΩC(x)ΩT ,
similarly to transformations of the moment of inertia tensor (2.3) under usual spatial rotations. We
call Eq. (2.2) as acolor realizationof the discussed solid body analogy.

The matrixCab(x) can be represented in the formCab(x) = Θ(x)diag(c1,c2,c3)ΘT(x), where
Θ is a localSO(3) transformation. The eigenvaluesc1 > c2 > c3 are interpreted as “moments
of inertia” defined with respect to the orthonormal “principal axes of inertia”ek, k = 1,2,3, re-
spectively. The axesek are normalized eigenvectors of the “moment of inertia tensor”C. The
eigenvectorn(x)≡ e3(x) corresponding to the lowest highest eigenvalue of the composite symmet-
ric field (2.2) defines a local direction of the “ellipsoid of inertia” associated with the moment of
inertia tensor (2.2).

The LC analogy appears naturally after one realizes that the fieldn(x) can be associated with
the direction (the "director field") of the longest principal axes of an axially symmetric molecule
in nematic LC’s. The ordinary nematic crystals [8] are liquids composed of rod-like direction-less
molecules. The molecules are invariant under (i) theZZ2 group consisting of theπ-rotations about
any axis perpendicular ton and (ii) theSO(2) group of rotations about the vectorn. Thus, the
physical space of the axial molecule – corresponding to the ellipsoid of inertia defined by the color
tensor (2.2) in the YM theory – is the coset

G/H = SO(3)/(ZZ2×SO(2))≡ RP(2) [color realization] (2.4)

The non-unit elements of this group make physically distinct changes to the director fieldn.
Note that in principle any eigenvector a color tensor of the type (2.2) can be chosen as the

director fieldn. However, the relevance of the particular definition of the director field to the
dynamics of the system should tested by numerical simulations.
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2.2 An example of realization of the liquid crystal variables in space

A space realization of the moment of inertia tensor (2.3) can be done analogously to the color
realization (2.2). The “tensor of inertia” is now taking values in the Euclidean coordinate space,
and the simplest analogue of (2.3) is

Sµν(x) = Aa
α(x)Aa

α(x) ·δµν −Aa
µ(x)Aa

ν(x) [space realization]. (2.5)

This is a rank-2 symmetric tensor in the coordinate space and is a singlet in the color space. At
each pointx of the coordinate space the tensor (2.5) describes a solid body made of three (for the
SU(2) gauge group) point-like objects of equal masses. The objects are located at pointsra

µ ≡ Aa
µ

where the superscripta labels the “masses”.
We identify the nematic variablen (i.e., the director field) with an eigenvector of the “moment

of inertia” tensor (2.5) corresponding to a lowest eigenvalue of. The physical space of the director
field n is now

G/H = SO(4)/(ZZ2×SO(3))≡ RP(3) [space realization]. (2.6)

3. Defects in liquid crystals

Non-perturbative dynamics of the gauge theories is often associated with presence of topo-
logical defects. The existence of a topologically stable defect of a particular dimensionality de-
pends [11] on non-triviality of a corresponding homotopy group of the physical spaceG/H. In
Table we show the first four homotopy groups of the color and space realization of the nematic LC
in the four-dimensional SU(2) YM theory.

color realization space realization

G/H π0 π1 π2 π3 G/H π0 π1 π2 π3

RP(2) 1 ZZ2 ZZ ZZ RP(3) 1 ZZ2 1 ZZ

Table 1: The physically interesting homotopy groups of the physical spacesG/H for the color and space
realizations of the liquid crystals in the SU(2) YM theory.

• Both the color and the space LC realizations of the four-dimensional SU(2) YM theory do
not possess domain walls since their physical spaces are the connected spaces,π0 ≡ 1.

• The fact that the both spaces are not simply-connected,π1 = ZZ2 tells that both realizations
have topologically stableZZ2 vortices called disclinations in the nematic LC’s and, simulta-
neously, the Alice vortices in the superfluid Helium-3 in the A-phase.

• The existence of the monopoles is characterized by theπ2 homotopy group, which is non-
trivial in the color realization (where the monopoles exist) and is trivial for the space realiza-
tion (no monopoles present).

• Finally, the non-triviality of theπ3 homotopy groups indicate that both realizations contain
instantons labelled by an integer number.
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4. Discussion

There is a crucial difference between the color and the space realizations of the LC variables
in the YM theory. In the real liquid crystals [8] the global rotationsn→Ωnn of the director fieldn,
are tightly linked with the rotations of the coordinate space,x→ Ωxx . In the color realization of
the LC in the YM theory (2.2) the rotation of the director fieldn and the Euclidean space rotations
are completely independent,Ωn 6= Ωx. On the other hand, in the space realization (2.5) these
transformations are linked together,Ωn ≡Ωx. Therefore the space realization of the LC in the YM
theory has a closer (compared to the space realization) analogy to thereal liquid crystals.

The physical space,G/H = RP(2), of the color realization of the LC in the SU(2) YM theory
depends on the number of colorsNc = 2 and is independent on the dimensionality of the coordi-
nate space. Contrary to the color realization, the physical space of the director field in the space
realization does not depend on the number of colorsNc and is alwaysG/H = RP(D−1), where
D = 4 is the dimensionality of the Euclidean coordinate space. The Landau gauge fixing plays an
auxiliary role in the definition of the inertial tensor of the sort (2.5), and therefore any other gauge
(or, maybe, no gauge fixing at all!) can be used to define the tensor similar to Eq. (2.5).

Let us discuss a possible role of the LC variables in the phase structure of the YM theory. Con-
sider the color,RP(2), realization of the LC in the SU(2) YM theory. Since the color is unbroken
both in the confinement and in the deconfinement phases, the nematic LC phase (corresponding to
broken color symmetry) is not allowed. Thus, the YM finite-temperature phase transition may only
be associated with a phase transition between one isotropic phase of the liquid crystal and another
isotropic phase. The two distinct isotropic phases were indeed observed in the lattice numerical
simulations of nematic liquid crystals [12]. One of such isotropic phases is characterized the con-
densation of topological defects. In the language of the YM theory this phase should correspond
to the confinement phase. Another isotropic phase of the LC – called the topologically ordered
phase [12] – is characterized by absence of the condensate of the topological defects. This second
LC phase can be considered as an analog of the deconfinement phase in the YM theory. Thus, in a
suitable color LC variables the deconfinement phase transition in the YM theory may be viewed as
a transition between the “topologically disordered” (T < Tc) phase and the “topologically ordered”
(T > Tc) phase of theRP(2) liquid crystal.

Next, consider the space,RP(3), realization of the LC in the YM theory. Since at finite tem-
perature the SO(4) group of the Euclidean rotations is anyway broken by the compactified (“tem-
perature”) direction of the space-time, then the nematic LC phase is not forbidden. In the nematic
phase the director field points into a particular direction of the space-time while in the isotropic
phase the director field is disordered. It is natural to associate the nematic LC phase with the de-
confinement YM phase, since in this phase the spatial (magnetic) and temporal (electric) variables
are clearly different. In the deconfinement phase the director field should naturally be pointing
along the temporal direction. Moreover, the topological defects should therefore be condensed in
the confinement (“isotropic”) phase and should be dilute in the deconfinement (“nematic”) phase.

In the language of the LC variables, the disorder caused by the LC topological defects in the
low-temperature phase of the YM theory may lead to the confinement of color. Investigation of
suitable LC realizations of the lattice SU(2) gauge theory is underway [13].
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