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We show that high-temperature perturbation theory describes extremely well the area law of

SU(N) spatial ’t Hooft loops, or equivalently the tension of the interface between different ZN

vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and

lattice perturbation theory for σ̃(T )/T 2 is less than 2%, down to temperatures O(10) Tc. For

SU(N),N > 3, the ratios of interface tensions, (σ̃k/σ̃1)(T ), agree with perturbation theory, which

predicts tiny deviations from the ratio of Casimirs, down to nearly Tc. In contrast, individual ten-

sions differ markedly from the perturbative expression. In all cases, the required precision Monte

Carlo measurements are made possible by a simple but powerful modification of the ’snake’ al-

gorithm.
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1. Introduction

’t Hooft has shown that, in Yang-Mills the-

s
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r

Figure 1: The interface tension is extracted from
the measured ratio exp(−σ̃a2) of partition func-
tions of two systems with partial interfaces, which
differ by the single shaded plaquette.

ories at zero temperature, and in the absence of
massless modes, an area law for the Wilson loop
implies a perimeter law for the ’t Hooft loop, and
vice versa. This dual behaviour carries over at
finite temperature [1]: while the temporal Wil-
son loop adopts a perimeter law in the deconfined
phase T > Tc, the spatial ’t Hooft loop acquires an
area law.

This can be shown without any simulations.
A spatial ’t Hooft loop W̃ (∂ Σ̃) bounding a surface
Σ̃, say, in the (x,y) plane, is created on the lat-
tice by “flipping” a stack of (z, t) plaquettes, one
per plane pierced by Σ̃. “Flipping” means that
the plaquette matrix UP is multiplied by a center
element zk = exp(i 2πk

N ) 1 before its trace is evalu-
ated. The corresponding partition function Zflipped

gives the ’t Hooft loop expectation value via 〈W̃ (Σ̃)〉 = Zflipped/Zpbc, where the denominator corre-
sponds to the usual action, with periodic boundary conditions.

It is easy to move the stack of plaquettes to a corner of the (z, t) plane, then absorb the phase
factor zk in the boundary condition of the temporal link Ut :

Ut(z+Lz, t = t0) = zkUt(z, t = t0) (1.1)

Zflipped then becomes the usual partition function (no flipped plaquettes) of a system where a twist
has been enforced on the Polyakov loop P:

P(x,y,z+Lz) = zkP(x,y,z) for x,y ∈ Σ̃ (1.2)

When T > Tc, the center symmetry is broken, and the twist above causes an interface to appear,
perpendicular to the z-direction, because the Polyakov loop lies in different ZN sectors at z = 0 and
z = Lz. The associated increase in free energy can be ascribed to the interface tension, or equiva-
lently to the ’t Hooft loop [dual] string tension σ̃ . These are two names for the same observable.

This equivalence allows us to compare numerical results for σ̃ with old perturbative calcula-
tions of the interface tension [2]. It also suggests a simple way to measure σ̃ , further simplifying
the “snake” algorithm [3]: just increase the interface area by one plaquette, and measure the change
in free energy exp(−σ̃a2) (see Fig. 1). We perform such simulations and comparisons for SU(N),
discussing first the case N = 2 [4] and then N ≥ 3.

2. SU(2)

We have repeated the 1-loop perturbative calculation of the interface tension of [2], on a lattice
of Nt time-slices. In fact, it amounts to substituting p → p̂ = 2

a sin pa
2 in the fluctuation determinant.
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Figure 2: The relative correction (Clat(Nt)− 1)

to the interface tension σ̃ , for different temporal
lattice sizes Nt .
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Figure 3: The dimensionless ratio σ̃/T 2(β ,Nt)

agrees excellently with the parameter-free per-
turbative formula eq.(2.2).

The resulting interface tension is multiplied by a coefficient Clat(Nt), whose difference with 1 is
shown in Fig. 2. The expected 1/N2

t behaviour does not set in until Nt & 10, and for practical
values of Nt , Clat(Nt) is large and not even monotonic. Thus, it provides an essential correction
when computing σ̃ on the lattice. The corresponding SU(N) leading-order perturbative prediction
is

σ̃k

T 2 (T ) = Clat(Nt)×
4π2

3
√

3
× 1√

(g2N)(T)
× k(N − k) (2.1)

Using the “snake”-like algorithm above, we have measured σ̃ in SU(2) for a wide range of cou-
plings β and lattice sizes Nt . As shown Fig. 3, excellent agreement is found with perturbation theory
at O(g2) [2], after converting the coupling from the improved scheme [5] to the lattice for SU(2):

σ̃
T 2 (β ,Nt) = Clat(Nt)×

2π2

3
√

6
×

√
β × (1− (0.21467+0.04644log Nt)

4
β

) (2.2)

The unknown O(g2) contribution to Clat(Nt) appears to be very small. We can then convert (β ,Nt)

to temperatures T/ΛMS , using 2-loop perturbation theory and Tc/ΛMS = 1.31(8) [6]. The data ob-
tained at various lattice spacings collapse nicely, and the ratio of the measured over the perturbative
σ̃ remains within ∼ 2% of 1, down to O(10)Tc where the measured σ̃ decreases, since it has to
vanish at the second-order transition T = Tc. See Fig. 4.
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Figure 4: The ratio of the measured over the perturbative interface tension, as a function of temperature.
Deviations are . 2%, down to the vicinity of Tc where the measured σ̃ must vanish.
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Figure 5: Ratios of interface tensions σ̃k/σ̃1, as a function of temperature, for SU(4) (left), SU(6) (mid-
dle) and SU(8) (right). The horizontal lines mark the Casimir values k(N−k)

N−1 . The curves show the O(g3)

perturbative prediction of [7]. The 2 curves for SU(4) correspond to Tc/ΛMS = 1.10 and 1.35.

3. SU(N)

The same numerical method can be used for SU(N) gauge theories. The interesting difference
is that the N-fold degeneracy of the vacuum now allows for inequivalent interfaces. In the vacuum,
the Polyakov loop can take values zk = exp(i2π k

N ) 1 ∈ ZN . Interfaces separating two vacua k1,k2

rotate the Polyakov loop by zk1 z−1
k2

= exp(i2π k1−k2
N ). The corresponding interface tension is σ̃k,

with k = k1 − k2 mod N. Charge conjugation imposes σ̃k = σ̃N−k. This leaves int(N
2 ) independent

interface tensions.

We measure them independently using the same setup of Fig. 1, where the “twisted” plaquette
has action ReTr zkUP. The temperature can be varied by changing the inverse coupling β or the
number Nt of time-slices. To stay clear of a bulk first-order transition for N > 3, we chose Nt ≥ 5
for T/Tc ≤ 1.5. The finite-temperature transition is first-order, and its strength increases with N.
This allows us to consider spatial sizes Ns = 3Nt only, and still maintain good control over the
thermodynamic limit. We check this by varying Ns in the potentially most problematic regime, for
SU(4) near Tc: no measurable finite-size effect is found.

Like for SU(2), we can compare our numerical results with perturbation theory, which is
available to O(g3) [2]:

σ̃k

T 2 (T ) =
4π2

3
√

3
× 1√

(g2N)(T )
× k(N− k)× (1−15.27853..

(g2N)(T)

16π2 ) (3.1)

Systematic errors of any kind will tend to cancel in the ratio σ̃k/σ̃1. Our results are presented
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Figure 6: σ̃k/T 2, divided by the Casimir k(N −
k), as a function of temperature. Data for all
SU(N),N ≥ 3 gauge groups and all values of k
collapse on a single curve, which deviates con-
siderably from the perturbative prediction (solid
curve) which worked so well for σ̃k/σ̃1 Fig. 5.

Figure 7: Running ’t Hooft coupling (g̃
√

N)(T )

extracted from σ̃k/T 2, as a function of tempera-
ture. The solid lines show 2-loop running, with
Tc/ΛMS = 1.10,1.25 and 1.35.

in Fig. 5 as a function of T/Tc, for gauge groups SU(4),SU(6) and SU(8) 1. The accuracy on
σ̃k/σ̃1 is 1-3%. In the SU(4) case, a scaling test (from Nt = 5 to 6 time-slices) shows no significant
scaling violations. The horizontal lines in Fig. 5 correspond to the leading and subleading order
perturbation theory, i.e. the ratio of Casimirs k(N−k)

N−1 . One can see excellent agreement with the
data at high temperature, as expected, with only tiny downward deviations at lower temperatures
T ↘ Tc.

Moreover, these tiny deviations are consistent with the bending curves in Fig. 5, which show
the O(g3) perturbative prediction [7]. The latter is expressed as a function of T/ΛMS , whereas
in our simulations we fix T/Tc. The needed factor Tc/ΛMS is not known accurately, but a large
variation between the accepted bounds 1.10 - 1.35 [9] in SU(4) has almost no visible effect: the
corresponding curves in Fig. 5(left) are almost indistinguishable. Thus, agreement of σ̃k/σ̃1 with
O(g3) perturbation theory persists in all our simulations at all temperatures studied. Disagree-
ment, if it occurs, should be most visible for SU(4), since this is the case where the deconfinement
transition is the weakest. This is also the most numerically difficult case, because the interface
tension becomes quite small (thus harder to measure) as T ↘ Tc. Nevertheless, we observe consis-
tency with perturbation theory, even for the smallest temperature where we can maintain sufficient
accuracy, namely T/Tc ∼ 1.1.

Since agreement with perturbation theory is so good for σ̃k/σ̃1, one might expect the same for

individual k-tensions σ̃k. This is not at all the case, as shown in Fig. 6. This figure shows σ̃k/T 2

k(N−k) ,
as a function of T/Tc, for all the gauge groups SU(N),N > 2 and k-values we have considered.
The solid line in the figure shows the O(g2) perturbative prediction, which is independent of N
and k (The N-, k-dependent O(g3) correction is very small). Large deviations from perturbation
theory are visible, showing that the interface tension sharply decreases near Tc, a phenomenon not
captured by the perturbative expansion which is blind to the phase transition. Nevertheless, the
departure from perturbation theory appears to be universal: data for all gauge groups collapse,

1The temperature is obtained from the determination of the T = 0 string tension at the same coupling β [8].

323 / 5



P
o
S
(
L
A
T
2
0
0
5
)
3
2
3

’t Hooft loops and perturbation theory Philippe de Forcrand

even for SU(3) (The SU(2) data, which are not shown, lie significantly below the rest). Thus, the

SU(N = ∞) limit is approached very fast, and one single curve σ̃k/T 2

k(N−k) (
T
Tc

) appears sufficient to give
a good, non-perturbative description of all SU(N),N > 2 interface tensions at all temperatures. This
universal, non-perturbative dependence can be expressed via a running coupling constant, whose
definition is taken to agree with the lowest order perturbative prediction:

( g̃
√

N)(T ) defined by
σ̃k

T 2 (T ) =
4π2

3
√

3
× 1√

( g̃2N)(T )
× k(N− k) (3.2)

This running coupling is shown in Fig. 6 as a function of T/Tc, together with the 2-loop running
coupling, where the curves correspond to Tc/ΛMS = 1.10, 1.25 and 1.35. Agreement occurs for
T & 3Tc. At lower temperatures, the coupling defined by the interface tension rises faster than
perturbation theory would predict. A similar phenomenon can be seen in other quantities, e.g. the
SU(N) pressure [10]. Therefore, one might try to explain the two together, using the single coupling
( g̃
√

N)(T ) and low-order perturbation theory. This naive attempt fails quantitatively. Therefore,
the pressure and the interface tension give us two independent properties of the SU(N = ∞) theory,
which are related by non-perturbative dynamics.

Note that Ref. [11] has performed a similar SU(N) study to ours, but has measured instead
derivatives of σ̃k with respect to the lattice coupling, dσ̃k/dβ . While their findings for this quantity,
i.e. Casimir scaling, agree with ours for the σ̃k’s, the claim they make (Casimir scaling of the σ̃k’s
down to T ∼ 1.02Tc) is not substantiated by their data. Casimir scaling of the σ̃k’s implies the same
for the derivatives, but the converse is not true, because the integration constant (which dominates
the value of σ̃k near Tc) is not determined in [11]. Our findings provide a justification for their
claim.
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