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We review briefly recent results of lattice simulations on 3ddomains in the vacuum state of

SU(2) gluodynamics. The defects are defined as unification of all the negative links in central

projection under condition that the total number of negative links is minimized. In the continuum

limit, negative links correspond, generally speaking to singular fields. The data indicate that total

volume of the defects scales in physical units. We consider also correlator of negative links. The

correlator scales in physical units as well, within the error bars. A new observation reported here

is a strong anisotropy of the correlator.

XXIIIrd International Symposium on Lattice Field Theory
25-30 July 2005
Trinity College, Dublin, Ireland

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:kovalenko@itep.ru
mailto:polykarp@itep.ru
mailto:syritsyn@itep.ru
mailto:xxz.mppmu.mpg.de


P
o
S
(
L
A
T
2
0
0
5
)
3
2
8

Geometry of three dimensional vacuum domains in four dimensional SU(2) gluodynamics.A.V. Kovalenko

1. Introduction

Understanding of non-perturbative fluctuations in the QCD vacuum has been fast changing
recently. The reason is the results of the lattice simulations. In continuum theory one thinks mostly
in terms of soft, spherically symmetric excitations like instantons. Lattice simulations,on the other
hand, indicate strongly that lower-dimensional defects are in fact crucial for confinement, for a
recent review see, e.g., [1]. Indeed, monopoles are trajectories, or 1d defects, while the central
vortices are surfaces, or 2d defects. Moreover, the 1d and 2d defects appear to be fine tuned, for
review see [2]. Namely, in case of the vortices the total area scales in physical units [1] while the
the totalnon-Abelianaction associated with the vortices is singular in the limit of vanishing lattice
spacinga [3]:

Avort ≈ 24( f m)−2V4 , Svort ≈ 0.54
Avort

a2 . (1.1)

whereAvort is the total area of the surfaces whileV4 is the total volume of the lattice. Theoretically,
the only way to explain the observations (1.1) is to assume that the surfaces possess also ultraviolet
divergent entropy which almost cancels the effect of suppression due to the action (1.1). More-
over, in case of trajectories similar fine tuning is an indispensable part of theso called polymer
representation of field theory, see e.g. [4].

In case of surfaces, however, even imposing the fine tuning between entropy and action ‘by
hand’ does not help much. In particular, if one starts with the Goto-Nambu action and tunes it
to the entropy strings decay into what is called branched polymers [4]. Thebranched polymers
are effectively 1d structures. The branched polymers are known to berelevant also toZ(2) gauge
theory in 3d [5] and in 4d [6].

The vortices observed in the vacuum state of gluodynamics are defined and studied phe-
nomenologically, through use of projected fields. How then can one distinguish between ‘true’
vortices (that is, Euclidean strings) and branched polymers? The answer appears simple. Consider
minimal three-dimensionalvolume bound by the central vortices. If the central vortices in the
non-Abelian case are similar to the central vortices ofZ(2) gauge theory then:

(V3)branched polymers∼ a·Avort . (1.2)

If, on the other hand, the central vortices are true 2d dimensional defects then, generally speaking,

(V3)strings ∼ Λ−1
QCD ·Avort . (1.3)

In other words, the minimal 3d volume bound by the vortices is to scale in the physical units.
Results of measurements of the 3d volume were reported first in [7] and favor the possibility (1.3).

Further results on geometrical properties of the 3d volume were obtained in [8]. In the sub-
sequent sections we review these results and their implications. Moreover,we add some further
preliminary results demonstrating anisotropy of the 3d volumes.

2. Three-dimensional volumes

2.1 Scaling of 3d volumes

Central vortices are defined as unification of negative plaquettes inZ(2) projection of the orig-
inal non-Abelian fields [1]. Plaquettes evaluated in projected fields are invariant under remaining
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(after the projection)Z(2) gauge transformations. And in this sense the vortices themselves are
uniquely defined. The volume bound by the vortices is not uniquely determined, on the other hand.
The minimal volume bound by the central vortices can be found by minimizing the number of
negative links. In other words, one fixes the remainingZ(2) gauge invariance by minimizing the
total number of negative links. In analogy with theU(1) case, theZ(2) gauge considered can be
calledZ(2) Landau gauge fixing. It turns out that the volume occupied by the minimal number of
negative links scales in the physical units [7]:

V3 ≈ 2( f m)−1V4 , (2.1)

whereV4 is the total volume of the lattice. As is explained in the Introduction, result (2.1) implies
that the central vortices of gluodynamics are not branched polymers butrather look as true 2d
surfaces.

Let us also mention that there is no extra non-Abelian action associated with the3d volume
under discussion [7]. The action is the same as on average over the wholelattice. This is in
contrast with the case of monopoles and central vortices, which are distinguished by an ultraviolet
divergent non-Abelian action, see [9] and [3], respectively. However, this difference can be readily
understood theoretically along the lines of argumentation presented in [2].

2.2 Removal of P-vortices

Measurements of the 3d volumes are also relevant to appreciate the meaning of the so called
removal of P-vortices introduced in [10]. One determines first central projected values of the link
variables,Zµ(x). And then modifies the original link matricesUµ(x) in the following way:

Uµ(x) → Ũµ(x), Ũµ(x) ≡ Zµ(x)Uµ(x) . (2.2)

The effect of (2.2) is disappearance of confinement. Although this is very impressive, there remains
a question to be answered, how serious is the damage to the original fields produced by anad hoc
procedure (2.2). If one judges by the number of plaquettes affected by(2.2) then the change
affects a small fraction of the whole lattice. Indeed, only plaquettes belonging to the P-vortices are
changing their sign and the probability of a given plaquette to belong to P-vortices is small:

θplaquette ∼ (a·ΛQCD)2 , (2.3)

wherea is the lattice spacing and the probability (2.3) tends to zero witha→ 0.
However, this cannot be a final answer to our question. Indeed, the ‘vanishing of confinement’

means that the value of the Wilson line for a typical field configuration is changing its sign under
(2.2) with a probability of order unit. Moreover, the Wilson line is 1d object and P-vortices are 2d
objects. Thus, generally speaking, they do not intersect in d=4. Therefore, change of the sign of
plaquettes belonging to the P-vortices cannot be the reason for disappearance of confinement under
(2.2). The way out of the paradox is apparently that we should follow change not only in plaquettes
but in the potentials (or links) as well and we come again to the 3d volumes considered above.

Namely, the minimal number of links which are affected by (2.2) is vanishing in thelimit of
a→ 0 as a 3d volume. It vanishes, however, not so strongly as the number ofplaquettes belonging
to P-vortices, see (2.3). Note that the original version of the removal of the P-vortices did not use
theZ(2) Landau gauge and approximately half of the links were modified by (2.2).
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3. Correlator of negative links

3.1 Definitions

As the next step, one can introduce correlator of negative links in theZ(2) Landau gauge.
Since the total volumeV3 scales in the physical units one may hope that the correlator scales as
well 1. In the continuum theory, if one imposes Landau gauge correlator of vector potentials is
described by a single form factor. We are usingZ(2) Landau gauge and, at first sight, there is
a single independent form factor as well. However, the notion of a negative link does not have
meaning in the continuum. More precisely, negative links correspond to singular fields,Aµ ∼ 1/a.
Therefore, we cannot rule out a priori more complicated dependencieson the mutual orientation
of the links and of the displacementx. We will consider, therefore, the correlator of the negative
links in its generality and begin with corresponding definitions. Consider first correlator of parallel
links:

G‖
µν(x) = 〈Z0,µZx,ν〉, µ = ν (3.1)

Moreover, orientation of links and separationx can be either mutually transversal so that the scalar
product ofxρ and of the unit vector in theµ-direction vanishes, or longitudinal so that the vectorxρ

is directed along theµ direction as well. One can also consider correlation of perpendicular links,

G⊥
µν(x) = 〈Z0,µZx,ν〉, µ 6= ν . (3.2)

Again, there are further sub-cases depending on the mutual orientation of xρ and links looking in
theµ−,ν− directions.

3.2 Isotropic case

Let us change variables,Ẑµ(x) = {1, i f Zµ(x) = −1; 0 i f Zµ(x) = 1} . Moreover, consider
first the isotropic correlator:

G ≡
1
Nr

Σr<|x|<r+a/2 〈Ẑµ(0), Ẑν(x)〉 , (3.3)

where the summation runs over all linksZµ(x) for x lying in the spherical layerr < |x| < r +a/2
andNr is the total number of links in the layer. At large distances the functionG(r) can be fitted by
a constant plus an exponent. The corresponding mass turns to be close tothe lowest glueball mass

m ≈ (1.4−1.6) GeV . (3.4)

Note also that measurements at finite temperature were performed very recently as well [12].

3.3 Anisotropy in the correlator of negative links

A new point which we are reporting here is observation of a strong anisotropy of the correlator
of the negative links in theZ(2) Landau gauge. We will concentrate on the caseµ = ν , see Eq.
(3.1). Defining

F‖,⊥ =
G‖,⊥

µν (x)

G‖,⊥
µν (∞)

− 1, (3.5)

1Minimization of the number of negative links can be considered as a discrete analog of minimization of< (Aa
µ )2 >.

Although the latter vacuum expectation value is gauge dependent, its minimal value may have a physical meaning [11].
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we observe that the correlators haveopposite signs. Namely, the correlation of the parallel negative
links which we are considering is positive if the displacementx is perpendicular to the links and is
negative if the displacement vector is parallel to the links. Our preliminary dataare presented in Fig
1. The both correlators exhibit scaling. The mass values associated with thetransversal correlator
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Figure 1: Correlation of parallel links: (a) transversal correlation, x = r⊥ is transversal to links, and (b)
longitudinal,x = r‖ is along the links.

are presented in Table 1.

β a, f m L m, f m−1

2.40 0.1183 24 5.30±0.10
2.45 0.0996 24 5.35±0.12
2.50 0.0854 24 5.20±0.15
2.55 0.0713 28 5.40±0.20
2.60 0.0601 28 5.50±0.10

Table 1: Mass parameter in the transversal correlator of parallel links.

3.4 Mass scales

Since the longitudinal correlator is negative, the correlator of negative links cannot be inter-
preted as propagator of a physical degree of freedom. Rather, the properties of the correlator reflect
geometry of the lower-dimensional defects. And at scale ofGeV−1 the geometry is not isotropic
(for a given field congfiguration). The correlators scale in physical units and the corresponding
mass scales are having physical meaning. In particular, the mass fitted above has the meaning
of inverse typical size of the 3d volume in the transverse direction. In otherwords, existence of
lower-dimensional defects brings in mass scales which are not glueball masses.

One can speculate, though, that at very large distancesx≫ (GeV)−1 these masses are unob-
servable. Indeed, at such distances the negative links will be separated by a few boundaries of the
percolating 3d volumes and the anisotropy should vanish. This guess is partly confirmed by the
observation that if, instead of going to limit of very largex, one averages over the directions the
correlation length is indeed close to the inverse glueball mass, see Eq. (3.4).
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