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We present the first implementation of the Cho–Faddeev–Niemi decomposition of the SU(2) Yang-

Mills field on a lattice. Our construction retains the color symmetry (global SU(2) gauge invariance)

even after a new type of Maximally Abelian gauge, as explicitly demonstrated by numerical simu-

lations.
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1. Introduction

The Cho-Faddeev-Niemi (CFN) decomposition, or a change of variables of the non-Abelian
gauge potential in Yang–Mills theory, was proposed by Cho [1] and Faddeev and Niemi [2]. CFN
decomposition introduces a color vector field n�x� enabling us to extract explicitly the magnetic
monopole as a topological degree of freedom from the gauge potential without introducing the fun-
damental scalar field in Yang–Mills theory. The CFN decomposition has been formulated and exten-
sively studied on the continuum spacetime. For non-perturbative studies, however, it is desirable to
put the CFN decomposition on a lattice. This will enable us to perform powerful numerical simula-
tions to obtain fully non-perturbative results.

The main purpose of this paper is to propose a lattice formulation of the CFN decomposition
and to perform the numerical simulations on the lattice, paying special attention to the magnetic
condensations. Our lattice formulation reflects a new viewpoint proposed by three of the authors in
a previous paper [4], which enables us to retain the local and global gauge invariance even after the
new type of MAG. In the whole of this paper, we restrict the gauge group to SU(2).

2. CFN decomposition in the continuum

We adopt the Cho-Faddeev-Niemi (CFN) decomposition for the non-Abelian gauge field [1, 2, 7].
By introducing a unit vector field n�x� with three components, i.e., n�x� � n�x� :� nA�x�nA�x� � 1
�A � 1�2�3�, the non-Abelian gauge field �μ�x� in the SU(2) Yang-Mills theory is decomposed as

�μ�x� � cμ�x�n�x��g�1∂μn�x��n�x���μ �x�� (2.1)

We use the notation: � μ �x� :� cμ�x�n�x�, � μ �x� :� g�1∂μn�x��n�x� and �μ �x� :� � μ �x�� � μ �x�.
By definition, � μ �x� is parallel to n�x�, while �μ �x� is orthogonal to n�x�. We require �μ �x� to be
orthogonal to n�x�, i.e., n�x� ��μ �x� � 0. We call � μ �x� the restricted potential, while �μ �x� is called
the gauge-covariant potential and �μ �x� is called the non-Abelian magnetic potential. In the naive
Abelian projection, � μ �x� corresponds to the diagonal component, while �μ �x� corresponds to the
off-diagonal component, apart from the vanishing magnetic part �μ �x�.

Accordingly, the non-Abelian field strength �μν�x� is decomposed as

�μν :� ∂μ�ν �∂ν�μ �g�μ ��ν � � μν �� μν � D̂μ�ν � D̂ν�μ �g�μ ��ν � (2.2)

where we have introduced the covariant derivative in the background field �μ by D̂μ ��� � D̂μ :�
∂μ �g�μ�� and defined the two kinds of field strength:

� μν �Eμνn� Eμν :� ∂μcν �∂νcμ � (2.3)

� μν �Hμνn�Hμν :��g�1n � �∂μn�∂νn�� (2.4)

We here notice that � μν :� � μν �� μν is gauge invariant, while each of �μν and � μν is not gauge
invariant. We can define gauge invariant monopole, called CFN monopole, using the field strength
� μν [3].
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Figure 1: Gauge symmetery of CFN-Yang-Mills
theory

Figure 2: Lattice CFN decomposition obtained by
imposing nMAG and LLG

3. CFN decomposition on a lattice

We discuss how the CFN decomposition is implemented on a lattice by defining the unit color
vector field nx to generate the ensemble of n-fields[3]. On lattice simulation, we can generate the
configurations of SU(2) link variables �Ux�μ�, Ux�μ � exp��igε�μ�x��� using the standard Wilson
action, where ε is the lattice spacing and g is the coupling constant. We use the continuum notation
for the Lie-algebra valued field variables, e.g., �μ�x�, even on a lattice. To obtain the configuration
with the same Boltzmann weight as the original YM theory, we define CFN decomposition on a lattice
based on gauge symmetry of CFN variables.

We define the CFN-Yang–Mills theory as the Yang-Mills theory written in terms of the CFN
variables. It has been shown [4] that the SU(2) CFN-Yang–Mills theory has the local gauge symmetry
G̃ω �θ

local :� SU�2�ω
local � �SU�2��U�1��θlocal larger than one of the original Yang-Mills theory SU�2�ωlocal ,

since we can rotate the CFN variable n�x� by angle θ��x� independently of the gauge transformation
of �μ�x� by the parameter ω�x�. In order to fix the whole enlarged local gauge symmetryG̃ω �θ

local , we
must impose sufficient number of gauge fixing conditions. Recently, it has been clarified [4] how the
CFN-Yang–Mills theory can be equivalent to the original Yang-Mills theory by imposing a new type
of gauge fixing called the new Maximal Abelian gauge (nMAG) to fix the extra local gauge invariance
in the continuum formulation, see Fig.1.

Corresponding to CFN Yang Mills theory in continuum, we define nMAG on a lattice. By intro-
ducing a vector field nx of a unit length with three components, we consider a functional FnMAG�U�n;Ω�Θ�

written in terms of the gauge (link) variable Ux�μ and the color (site) variable nx defined by

FnMAG�U�n;Ω�Θ� :� ∑
x�μ

tr�1�Θnx
ΩUx�μ

Θnx�μ
ΩU†

x�μ�� (3.1)

Here we have introduced the enlarged gauge transformation: ΩUx�μ :� ΩxUx�μ Ω†
x�μ for the link vari-

able Ux�μ and Θnx :� Θxn
�0�
x Θ†

x for an initial site variable n�0�x where gauge group elements Ωx and Θx

are independent SU(2) matrices on a site x. The former corresponds to the SU�2�ω gauge transfor-
mation ��μ�

ω�x� of the original potential, while the latter to the adjoint �SU�2��U�1��θ rotation, (see
Fig.1).

After imposing the nMAG, the theory still has the local gauge symmetry SU�2�ω�θ
local :� SU�2�II

local .
Therefore, nx configuration can not be determined at this stage. In order to completely fix the gauge
and determine nx, we need to impose another gauge fixing condition for fixing SU�2�IIlocal . In this
paper we choose the conventional Lorentz-Landau gauge or Lattice Landau gauge (LLG) for this
purpose. The LLG can be imposed by minimizing the function: FLLG�U ;Ω� � ∑x�μ tr�1�ΩUx�μ�
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with respect to the gauge transformation Ωx, (See Fig. 2). The LLG fixes the local gauge symmetry
SU�2�ω�θ

local � SU�2�II
local , while the LLG leaves the global symmetry SU(2)ωglobal � SU�2�II

global intact.
Therefore, we define the lattice nMAG by minimizing the functional FnMAG�U�n;Ω�Θ� with respect
to the gauge transformation �Ωx� and �Θx�, and we obtain the lattice CFN decomposition:

ΩUx�μ � exp��iεg�� μ �x�� � μ �x���μ �x���� (3.2)

Then a remaining issue to be clarified is how to construct the ensemble of the color n-fields
used in defining FnMAG�U�n;Ω�Θ� and Ux�μ . Now it is shown that the desired color vector field nx is

constructed from the interpolating gauge transformation matrix Θx according to n�0�x � σ3 and

nx :� Θxσ3Θ†
x � nA

x σA� nA
x � tr�σAΘxσ3Θ†

x ��2 �A � 1�2�3�� (3.3)

The first observation is that the functional FnMAG�U�n;Ω�Θ� has another equivalent form FnMAG�U�n;Ω�Θ� �

FMAG�U ;G� � ∑x�μ tr�1�σ3
GUx�μ σ3

GU†
x�μ�, with the identification Gx :� Θ†

xΩx. This procedure de-
termines the configurations �G�x� of SU(2) variables achieving the minimum of FMAG�U ;G�� (See
Fig. 2).

On a gauge orbit, two representatives on the two gauge-fixing hypersurfaces (MAG and LLG) are
connected by the gauge transformation Θ � Ω��G��†. Thus we can determine a set of interpolating
gauge-rotation matrices �Θx� to construct nx ensemble. In fact, the color vector nx constructed in
this way represents a real-valued vector �nx � �n1

x �n
2
x �n

3
x� of unit length with three components, and

transforms in the adjoint representation under the gauge transformation II.

By imposing simultaneously the nMAG and the LLG in this way, we can completely fix the
whole local gauge invariance G̃ω �θ

local of the lattice CFN-Yang–Mills theory. It should be remarked that,
even after the gauge fixing, the global (color) symmetry SU�2�ω�θ

global is unbroken.

Finally, we give the explicit expressions of CFN variables on lattice, from link variable U and n-
fields. In the continuum theory, the CFN decomposition is uniquely obtained as cμ�x� � n�x���μ�x�
and �μ � g�1n�x��D̂μ ��μ �n�x� for the given gauge potential �μ�x� and n-field [6]. Thus CFN

variables on a lattice can be defined by the gauge potential gε�x�μ :� i
2

�
Ux�μ �U†

x�μ

�
� using U-

linear definition. We define the differential of n-field as a forwarded differential corresponding to
a link variable, Δμ�n�x� :��n�x� εμ̂�� γμ�x��n�x�, where μ̂ is a unit vector to the direction μ . The
coefficient γμ�x� ��n�x� εμ̂� ��n�x� is defined to satisfy the orthogonal condition Δμ�n�x� ��n�x� � 0
(∂μ�n�x� ��n�x� � 0 in continuum theory). So the CFN variables on a lattice are obtained as follows;

� x�μ :� Δμ�nx��nx ��nx�ε μ̂ ��nx� (3.4)

cx�μ � � x�μ �nx� �x�μ :� � x�μ � cx�μnx� � x�μ � (3.5)

4. Numerical simulations

Our numerical simulations are performed as follows. In the continuum formulation, the CFN
variables were introduced as a change of variables in such a way that they do not break the global
gauge symmetry SU�2�IIglobal or "color symmetry", corresponding to the global gauge symmetry
SU�2�I

global in the original Yang-Mills theory. Hence the nMAG can be imposed in terms of the
CFN variables without breaking the color symmetry. This is a crucial difference between the nMAG
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Figure 3: <nn> correlation
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Figure 4: constraint effective potential

based on the CFN decomposition and the conventional MAG based on the ordinary Cartan decompo-
sition which breaks the SU�2�global explicitly. Therefore, we must perform the numerical simulations
so as to preserve the color symmetry as much as possible.1 This is in fact possible as follows.

Remember that the nMAG on a lattice is achieved by repeatedly performing the gauge transfor-
mations. In order to preserve the global SU(2) symmetry, we adopt a random (global) gauge trans-
formation only in the first sweep among the whole sweeps of gauge transformations in the standard
iterative gauge fixing procedure for the LLG. This procedure moves an ensemble of unit vectors nx to
a random ensemble of nx which is far away from nx � �0�0�1�. Then we search for the local minima
around this configuration of nx by performing the successive gauge transformations. The first random
gauge transformation as well as the subsequent gauge transformations are accumulated to obtain the
gauge transformation matrix Θ by which n is constructed.

4.1 Lattice data

Our numerical simulations are performed on the lattice with the lattice size L4 � 244 by using
heat-bath method for the standard Wilson action[8] for the gauge coupling β � 2�3� 2�7 and periodic
boundary conditions. Staring with cold initial condition and thermalizing 50*100 sweeps, we have
obtained 200 configurations at intervals of 100 sweeps. For LLG and MAG, we have used the over
relaxation algorithm.

We first focus on the n-fields. We have measured expectation values
�
nA

x

�
�A � 1�2�3�, and have

obtained the vanishing expectation values. Moreover, we have measured the two-point correlation
functions defined by

�
nA

x nB
0

�
, see Fig. 3. The two-point correlation functions

�
nA

x nA
0

�
(no summation

over A) exhibit almost the same behavior in all the directions (A � 1�2�3), while
�
nA

x nB
0

�
(A �� B)

vanish. Thus, we have obtained the correlation function
�
nA

x nB
0

�
� δ ABD�x� respecting color symme-

try. These results indicate that the global SU�2� symmetry (color symmetry) is unbroken in our main

simulations.
Secondary, we focus on the anatomy of the condensation by CFN variables. We measure the

"naive" condensation of mass dimension 2; �gε�2
�
� 2

x�μ
�
��gε�2 ��c2

x�μ
�
�
�
� 2

x�μ
�
�
�
�2

x�μ
�
�2

�
� x�μ�x�μ

��
,

and have obtained the non-zero value of condensaions of CFN variables. We also measure the
"constraint effective potential" defined by probability distribution of a local operator Φ�x�; Pr�φ� �
	δ �φ�x��Φ�x��
 and the effective potential is defined by Ve f f �φ� � � ln	δ �φ�x��Φ�x��
 � Here,
we measure effective potential for Φ�x� �

�
� 2

x�μ � c2
x�μ � � 2

x�μ � �2
x�μ � ���

�
. Fig. 4 shows that effective

1Whether the color symmetry is spontaneously broken or not is another issue to be investigated separately.
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potential �Ve f f �φ� has peaks at nonzero expectation value 	Φ�x�
 � This suggest that we can expect
non-zero condensations.

5. Summary and Discussion

We have shown how to implement the CFN decomposition (change of variables) of SU(2) Yang–
Mills theory on a lattice, according to a new viewpoint proposed in [4]. A remarkable point is that our
approach can preserve both the local SU(2) gauge symmetry and the color symmetry (global SU(2)
symmetry) even after imposing a new type of gauge fixing (called the nMAG) which is regarded as a
constraint to reproduce the original Yang-Mills theory.

Moreover, we have succeeded to perform the numerical simulations in such a way that the color
symmetry is unbroken. This is the first remarkable result. This is in sharp contrast to the previous
approaches [10, 9]. Although the similar technique of constructing the unit vector field nx from a
SU�2� matrix Θ has already appeared, e.g., in [10, 9, 11], there is a crucial conceptual difference
between our approach and others.

We have shown preliminary result for the anatomy of the condensation of mass dimension 2. We
have obtained the result suggesting non-zero value of the condensations. To determine the physical
value of the condensation, we need the further study such as the renomalization of the CFN variables.
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