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1. Introduction

OnIR* the gluon propagator has been calculated with several techniquesDysiog-Schwinger
equations[[lL], stochastic quantizatigh [2] and exact renormalizatiorpgrguation[[B]. Represent-
ing the gluon propagator in Landau gauge as

D3 (p) = 6%(8.y — pupv/P?)D(P?) (1.1)

the low momentum behaviour was found to Dgp?) Pg° (p?)-1 with k ~ 0.6. On the other
hand calculations on the tor@&* using Dyson-Schwinger equatior$ [4] and lattice calculations
(B, B.[T.[8.[P] seem to indicate a non-zero valu®ddt p =0, i.e.k = 0.5. A possible explanation
for the difference betweeR* (non-compact space-time) afif (compact space-time) are zero
momentum modes on the compact space-time manifold which potentially give rise tesvena
contribution to the gluon propagator.

In this talk we wish to investigate how the implementation of non-trivial boundanglitions
changes the infrared behaviour of the gluon propagator.

2. Twisted boundary conditions

To determine the influence of different boundary conditions on the gluopagator on the
lattice (or on the torus) we will considéwistedboundary conditions.

As usual we denote link variables b, (x), the unit vector inu-direction byl and the ex-
tension of the lattice iu-direction byL,. Gauge fixing can be implemented by maximizing some
functionalF [g,U] with respect to gauge transformatidaig(x) — UZ(x) = g~ 2(x)U, (X)g(x+ f1),

e.g. for Landau gauge we hakég,U| =3, , Uﬁ(x). Non-trivial boundary conditions on the lattice
(as well as on the torus) can be introduced by demanding that the link keaisgieriodic up to a
gauge transformation, i.e.

Up (¢ Ly 9) = U2 (%) = Q, (00U () Qu (x+ ). (2.1)

whereQ,(x) is called transition function. This property of the link variable ensures taagg
invariant observables are actually periodic. The transition functione t@ulfill the cocycle
condition

Qu(X)Qu(X+LyV) = Qu(X)Qu(X+Lyfl)Zyy, (2.2)

whereZ,,, are elements of the center of the gauge group. Twisted boundary cosditighy
that some of the group elemertg, are non-trivial. Under a general gauge transformagjahe
transition functions transform as

QY (%) = g1 (0Qu (YG(X+ Ly ) (2.3)

leaving the twist<Z;,, unchanged. For twisted boundary conditions gauge fixing is non-triNial:
we implement non-trivial boundary conditions via some transition functips) we should keep
these transition functions fixed during gauge fixing, i.e. we have to find tix@iman of the gauge
fixing functional F [g,U] with respect to such gauge transformatignahich do not change the
transition functions.
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But there is a second problem concerning the choice of transition fusdiom given gauge
functionalF [g,U]. Let us consider the Landau gauge in periodic boundary conditionsinitang
F[g,U] in this case means that we try to make the deviation of the gauge fixed cotiigu/d(x)
from the configuratiot, (x) = 1 (which corresponds to the absolute maximurnFoéind which
has zero field strength) as small as possible. On the other hand one asttdardly) choose
non-trivial transition functionsand keep them fixed during Landau gauge fixing. Then in general
U, (x) = 1 will not fulfill these new periodicity propertie§ (2.1) and some other comﬁg’unUp(x)
will be the maximum of the functiona¥[1,U]. However, in general this configuratia, (x)
will have non-zero and non-constant field strength. Landau gauipg fixith these (artificially)
introduced transition functions will make the deviation of the gauge fixed glmﬁionuf}(x)
from U“ (x) as small as possible. This will obviously destroy translational invarianbé&hwis
physically not sensible. The lesson is that one should be careful isitigihie transition functions.
If possible one should choose the transition functions (also in the twistedisiash that),, (x) = 1
fulfills eq. @2.3).

From now on we will specialize to the gauge grdsig(2). We parametrize the links as usual
(0k - Pauli matrices)

Uu() =W (X)L +iuk(x)ox, uleR, j=0,1,23 (2.4)
and choose constant transition functions, so-called twist edtgrs [10]:
Qo=1, Qx=iok, k=123 (2.5)
corresponding to the twists
Zo=1, k=1,23, Zip=7Zp3=2731=—1. (2.6)
From eq. [2]1) one easily obtains

ui(x), if k=a

—ui(x), else

Ud (X+Lik) = U (), U (x+Li) = { : (2.7)
i.e. some of the colour components are anti-periodic in spatial directionsvaldueim configura-
tion U, (x) = 1 fulfills these boundary conditions, which are compatible with Landau gauge.

Now let us have a look at the zero momentum part of the gauge potential alige gotential
Ay (X) (corresponding to the linkd, (x)) and and its Fourier transformation are given by

Au(X) = 1/2(Up(x) —U;f (x)) (2.8)
~ 1 .
_ = px
Aup) = 7 3 Aule 2.9)
With periodic boundary conditions the zero-momentum @art= A“(p = 0) shows large fluctu-

ations during the simulatiorj [lL1], as can be seen ifJig. 1. These fluctuaiiahtheir amplitudes
are clearly reduced with twisted boundary conditions. At this point let ustioretwo further

1This can be achieved byremn-periodicgauge transformatiog. Then, according to e(m.:%), one has the transition
functionsQy (x) = g~ (X)g(x+ Ly f1) # 1.
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Figure 1. Simulation history of the zero momentum p@jt in periodic (black) and twisted (red) boundary
conditions on a $lattice with 8 = 10 (left) andB = 2.15 (right).
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Figure 2: Plot of gluon propagator D(p?) with twisted and periodic boundary conditions for different
lattice sizes (left) and comparison with results from Dyson-Schwinger equation on the Torus [H]

advantages of the constant transition functions: They are numericaiht@asplement and the
periodicity in time allows finite temperature calculations.

The effect of the twisted boundary conditions should become smaller cer latgces, while
for small lattices we expect a strong dependence on the lattice size.

3. Thegluon propagator in twisted boundary conditions

We have measured the gluon propagator for different lattice sifs-@& 15, see fig[|2. As can
be seen: for larger spatial extension of the lattice the “twisted” gluon gadpabecomes larger and
the “twisted” gluon propagator is always smaller than the “periodic” glu@pagator, i.e. one can
consider the gluon propagator in the twisted ensemble as a lower boune fgluttin propagator
in the periodic ensemble. As expected for larger spatial extensions tleeedife between the
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propagators with periodic and twisted boundary conditions decreasédheifaite size effects due
to the twists become smaller.

All these observations suggest that the gluon propadatpf) on the lattice has a non-zero
limit for p — 0. Furthermore, our results confirm results obtained by solving DysbmBger
equations on the toruf [4].

Unfortunately, our investigations do not clarify the difference betwemmpact and non-
compact space-times. Our findings seem to indicate that this difference imfridueed behaviour
of the gluon propagator remains even in the limit of an infinitely large lattice.
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