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We investigate the infrared behaviour of the gluon propagator in Landau gauge on a lattice with
twisted boundary conditions.

Analytic calculations using Dyson-Schwinger equations, exact renormalization group and

stochastic quantization show that the gluon propagator in Landau gauge approaches zero for small

momentum. On the other hand lattice calculations and calculations on a four-torus seem to give

rise to a non-zero limit. One possible reason for this difference is the existence of zero-momentum

fluctuation modes which potentially give a massive contribution to the gluon propagator. Our sim-

ulations show that with twisted boundary conditions these zero-momentum modes are suppressed

and the gluon propagator becomes smaller than in a periodic ensemble.
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1. Introduction

On
� 4 the gluon propagator has been calculated with several techniques, usingDyson-Schwinger

equations [1], stochastic quantization [2] and exact renormalization group equation [3]. Represent-
ing the gluon propagator in Landau gauge as

Dab
µν(p) = δ ab(δµν − pµ pν/p2)D(p2) (1.1)

the low momentum behaviour was found to beD(p2)
p→0
∝ (p2)(2κ−1) with κ ≈ 0.6. On the other

hand calculations on the torus� 4 using Dyson-Schwinger equations [4] and lattice calculations
[5, 6, 7, 8, 9] seem to indicate a non-zero value ofD at p = 0, i.e.κ = 0.5. A possible explanation
for the difference between

� 4 (non-compact space-time) and� 4 (compact space-time) are zero
momentum modes on the compact space-time manifold which potentially give rise to a massive
contribution to the gluon propagator.

In this talk we wish to investigate how the implementation of non-trivial boundary conditions
changes the infrared behaviour of the gluon propagator.

2. Twisted boundary conditions

To determine the influence of different boundary conditions on the gluon propagator on the
lattice (or on the torus) we will considertwistedboundary conditions.

As usual we denote link variables byUµ(x), the unit vector inµ-direction byµ̂ and the ex-
tension of the lattice inµ-direction byLµ . Gauge fixing can be implemented by maximizing some
functionalF [g,U ] with respect to gauge transformationsUµ(x) →Ug

µ(x) = g−1(x)Uµ(x)g(x+ µ̂),
e.g. for Landau gauge we haveF [g,U ] = ∑x,µ Ug

µ(x). Non-trivial boundary conditions on the lattice
(as well as on the torus) can be introduced by demanding that the link variable is periodic up to a
gauge transformation, i.e.

Uµ(x+Lν ν̂) = UΩν
µ (x) = Ω−1

ν (x)Uµ(x)Ων(x+ µ̂) , (2.1)

whereΩν(x) is called transition function. This property of the link variable ensures that gauge
invariant observables are actually periodic. The transition functions have to fulfill the cocycle
condition

Ων(x)Ωµ(x+Lν ν̂) = Ωµ(x)Ων(x+Lµ µ̂)Zµν , (2.2)

whereZµν are elements of the center of the gauge group. Twisted boundary conditions imply
that some of the group elementsZµν are non-trivial. Under a general gauge transformationg the
transition functions transform as

Ωg
µ(x) = g−1(x)Ωµ(x)g(x+Lµ µ̂) (2.3)

leaving the twistsZµν unchanged. For twisted boundary conditions gauge fixing is non-trivial:If
we implement non-trivial boundary conditions via some transition functionsΩµ(x) we should keep
these transition functions fixed during gauge fixing, i.e. we have to find the maximum of the gauge
fixing functionalF [g,U ] with respect to such gauge transformationsg which do not change the
transition functions.
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But there is a second problem concerning the choice of transition functions for a given gauge
functionalF [g,U ]. Let us consider the Landau gauge in periodic boundary conditions. Maximizing
F [g,U ] in this case means that we try to make the deviation of the gauge fixed configurationUg

µ(x)
from the configurationUµ(x) ≡ � (which corresponds to the absolute maximum ofF and which
has zero field strength) as small as possible. On the other hand one could (awkwardly) choose
non-trivial transition functions1 and keep them fixed during Landau gauge fixing. Then in general
Uµ(x)≡ � will not fulfill these new periodicity properties (2.1) and some other configurationŨµ(x)
will be the maximum of the functionalF [�,U ]. However, in general this configuratioñUµ(x)
will have non-zero and non-constant field strength. Landau gauge fixing with these (artificially)
introduced transition functions will make the deviation of the gauge fixed configurationUg

µ(x)
from Ũµ(x) as small as possible. This will obviously destroy translational invariance, which is
physically not sensible. The lesson is that one should be careful in choosing the transition functions.
If possible one should choose the transition functions (also in the twisted case) such thatUµ(x)≡ �
fulfills eq. (2.1).

From now on we will specialize to the gauge groupSU(2). We parametrize the links as usual
(σk - Pauli matrices)

Uµ(x) = u0
µ(x)�+ iuk

µ(x)σk , u j
µ ∈

�
, j = 0,1,2,3 (2.4)

and choose constant transition functions, so-called twist eaters [10]:

Ω0 ≡ � , Ωk ≡ iσk , k = 1,2,3 (2.5)

corresponding to the twists

Z0k = � , k = 1,2,3, Z12 = Z23 = Z31 = −� . (2.6)

From eq. (2.1) one easily obtains

u0
µ(x+Lkk̂) = u0

µ(x) , ua
µ(x+Lk) =

{

ua
µ(x) , if k = a

−ua
µ(x) , else

, (2.7)

i.e. some of the colour components are anti-periodic in spatial directions. Thevacuum configura-
tion Uµ(x) ≡ � fulfills these boundary conditions, which are compatible with Landau gauge.

Now let us have a look at the zero momentum part of the gauge potential. The gauge potential
Aµ(x) (corresponding to the linksUµ(x)) and and its Fourier transformation are given by

Aµ(x) = 1/2(Uµ(x)−U+
µ (x)) (2.8)

Ãµ(p) =
1
V ∑

x
Aµ(x)eipx (2.9)

With periodic boundary conditions the zero-momentum partCµ := Ãµ(p = 0) shows large fluctu-
ations during the simulation [11], as can be seen in fig. 1. These fluctuationsand their amplitudes
are clearly reduced with twisted boundary conditions. At this point let us mention two further

1This can be achieved by anon-periodicgauge transformationg. Then, according to eq. (2.3), one has the transition
functionsΩµ (x) = g−1(x)g(x+Lµ µ̂) 6= �.
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Figure 1: Simulation history of the zero momentum partCµ in periodic (black) and twisted (red) boundary
conditions on a 64 lattice withβ = 10 (left) andβ = 2.15 (right).
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Figure 2: Plot of gluon propagator D(p2) with twisted and periodic boundary conditions for different
lattice sizes (left) and comparison with results from Dyson-Schwinger equation on the Torus [4].

advantages of the constant transition functions: They are numerically easy to implement and the
periodicity in time allows finite temperature calculations.

The effect of the twisted boundary conditions should become smaller on larger lattices, while
for small lattices we expect a strong dependence on the lattice size.

3. The gluon propagator in twisted boundary conditions

We have measured the gluon propagator for different lattice sizes atβ = 2.15, see fig. 2. As can
be seen: for larger spatial extension of the lattice the “twisted” gluon propagator becomes larger and
the “twisted” gluon propagator is always smaller than the “periodic” gluon propagator, i.e. one can
consider the gluon propagator in the twisted ensemble as a lower bound for the gluon propagator
in the periodic ensemble. As expected for larger spatial extensions the difference between the
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propagators with periodic and twisted boundary conditions decreases, i.e. the finite size effects due
to the twists become smaller.

All these observations suggest that the gluon propagatorD(p2) on the lattice has a non-zero
limit for p → 0. Furthermore, our results confirm results obtained by solving Dyson-Schwinger
equations on the torus [4].

Unfortunately, our investigations do not clarify the difference between compact and non-
compact space-times. Our findings seem to indicate that this difference in theinfrared behaviour
of the gluon propagator remains even in the limit of an infinitely large lattice.
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