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1. Introduction

Electromagnetic and scalar form factors of pion are fundamental quantities in the low energy
dynamics of pions. In the chiral perturbation theory (ChPT) their radii are related to the low energy
constants at O(p4). The electromagnetic charge radius is experimentally measured rather precisely,
〈r2〉π

V = 0.452(10) fm2 [1], and the scalar radius can be related to FK/Fπ or ππ scattering ampli-
tudes. Therefore, these simple quantities provide a good testing ground of the lattice calculation
techniques. In particular, the chiral extrapolation seems to induce large systematic errors unless
the unquenched lattice simulation can treat pions well below 300 MeV where the chiral logarithm
effect should become prominent [2, 3]. It is interesting to check if the lattice data reproduce the
expected chiral logarithms in the pion form factors.

Our numerical calculation is performed on the two-flavor gauge ensembles produced by the
JLQCD collaboration [4] at β = 5.2 on a 203×48 lattice with the O(a)-improved Wilson fermions.
High statistics is the key for the form factor measurements; we accumulated 1,200 gauge configu-
rations for each five sea quark masses. The pion form factors are obtained as a by-product of our
calculation of the Kl3 form factors [5]. It turned out that the largest effect on the Kl3 form factor at
zero momentum transfer f Kπ

+ (0) comes from the shift of the zero recoil point to tmax = (mK −mπ)2.
For the evaluation of f Kπ

+ (0)/ f Kπ
+ (tmax) we need a precise knowledge of the pion/kaon charge ra-

dius, which is a subject of this paper.

2. Pion form factors

The pion electromagnetic form factor Gπ(q2) is defined as

〈π(p′)|Jµ
em|π(p)〉 = Gπ(q2)(p+ p′)µ , (2.1)

where q2 = (p− p′)2 and Jµ
em is the electromagnetic current. Because of the charge conservation,

the form factor Gπ(q2) is normalized as Gπ(0) = 1. It is well known that the experimental data
in the small momentum transfer Q2 = −q2 . 1 GeV2 are well described by the vector meson
dominance hypothesis Gπ(Q2) = 1/(1+Q2/m2

ρ). (For a summary of experimental results, see for
example [6].)

The charge radius 〈r2〉π
V is a slope of Gπ(q2) near the zero momentum transfer

Gπ(q2) = 1+
1
6
〈r2〉π

V q2 + · · · . (2.2)

Near the chiral limit, ChPT predicts the chiral logarithm [7]

〈r2〉π
V =

12Lr
9

f 2 −
1

(4π f )2

[

ln
m2

π
Λ2 +

3
2

]

. (2.3)

Unlike the pion decay constant, for which the chiral logarithm appears in the form m2
π lnm2

π , the
chiral limit of the charge radius is divergent, and one expects a large effect as the physical pion
mass is approached. The current experimental value is 〈r2〉π

V = 0.452(10) fm2 [1].
The scalar form factor GS(q

2) is defined in a similar manner.

〈π(p′)| q̄q|π(p)〉 = GS(q
2), (2.4)
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Figure 1: Double ratio (3.1) for the vector form factor at K = 0.1340 (left) and 0.1355 (right). Momentum
pπ is (1,0,0) (circles), (1,1,0) (squares), and (1,1,1) (diamonds) in units of 2π/L.

Here the scalar operator is understood as a flavor non-singlet one. The scalar radius 〈r2〉π
S is defined

for GS(q
2) like 〈r2〉π

V for Gπ(q2) in (2.3). The chiral logarithm is even stronger for the scalar
radius than for the charge radius, i.e. the coefficient of the log term is −15/2(4π f )2 rather than
−1/(4π f )2 in (2.3).

Although there is no direct physical process induced by (2.4), the scalar radius can be extracted
from the ππ scattering using ChPT, 〈r2〉π

S = 0.61(4) fm2 [8]. It can also be related to fK/ fπ ,
from which one obtains 0.65(4) fm2. For non-degenerate quark masses, the scalar form factor
corresponds to f Kπ

0 (q2) of the Kl3 decay. Its radius 〈r2〉Kπ
S is measured as 0.235(14)(8) fm2 [9] or

0.165(16) fm2 [10] for charged and neutral kaons, respectively. It indicates that the flavor symmetry
breaking is a large effect as suggested by the large chiral logarithm.

3. Lattice calculation

For the calculation of pion form factors we calculate three-point functions CPSJPS
(pπ , tJ) with

operators J (= V4 or S) inserted at time tJ . Smeared pion interpolating fields PS are set at time t = 0
and T/2 (T is the temporal extent of our lattice T = 48). Spatial momentum is inserted at t = T/2
and tJ , so that the initial pion propagating from t = 0 to tJ is at rest and the final pion between tJ

and T/2 has a momentum pπ . To extract the form factor we use a double ratio

CPSJPS
(pπ , tJ)

CPSJPS(0, tJ)

CPSPL
(pπ , tJ)

CPSPL
(0, tJ)

−→
GJ(q

2)

GJ(0)

mπ +Eπ(pπ)

2mπ
, 0 � tJ � T/2, (3.1)

where the two-point function CPSPL
(pπ , t) in the denominator is constructed with the same smeared

operator PS and a local operator PL. In the large enough time separation the numerator gives the
ratio of form factors GJ(q

2)/GJ(0) up to some kinematical factor, while the denominator becomes
identity because 〈π(p)|PL|0〉/〈π(0)|PL|0〉 = 1 must be satisfied for Lorentz invariance. Positive
and negative tJs are averaged in order to increase statistics.
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Figure 2: Vector form factor as a function of t = q2 normalized by the Sommer scale r0. Solid curve shows
the vector meson dominance form 1/(1−q2/m2

ρ) with the physical ρ meson mass.

Plots are shown in Figure 1 for the vector current J = V4. Results for the heaviest (K = 0.1340)
and lightest (K = 0.1355) quark masses are plotted; the data have similar quality for other quark
masses. (Sea and valence quark masses are set equal in our calculation setup.) We find a fairly
good plateau beyond t ' 4, though the signal for the largest momentum (1,1,1) is not satisfactory.
We fit the data with a constant in the range [4,8] to extract the form factor ratio in the RHS of (3.1).

4. Form factor results

In Figure 2 we plot the vector form factor for each K value. We fit the data with two different
fit forms:

Gπ(t) =
1

1− c0(r
2
0t)

+ c1(r
2
0t)2, (free pole), (4.1)

Gπ(t) =
1

1− t/m2
V

+d0(r
2
0t), (measured pole). (4.2)

Here, t = q2 is normalized by the Sommer scale r0. c0, c1, and d0 are fit parameters. Both forms
are motivated by the vector meson dominance ansatz, but the pole mass is a free parameter in the
“free pole” form (4.1), while the vector meson mass measured on the lattice at a given quark mass
is used in the “measured pole” form (4.2). In Figure 2 the fit curves with the “free pole” form are
plotted, but both can fit the lattice data equally well.

Theoretically, we prefer the “measured pole” form, because the vector meson pole must appear
with the known vector meson mass from the analyticity. There are other contributions from higher
resonances and continuum states, that we may parametrize by the linear term d0(r

2
0t) near t = 0.

This statement applies when the valence quark mass is heavy enough that the ρ → ππ threshold
does not open, which is the case in our lattice calculation. As the quark mass decreases, the ππ
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Figure 3: Chiral extrapolation of the pion charge radius. Results from the “free pole” (circles) and “mea-
sured pole” (diamonds) are plotted together with the extrapolation curves with (4.3). An expectation from
the pole dominance model 1/m2

V is also plotted (triangles).

continuum state starts to contribute and finally it reproduces the ChPT prediction near the chiral
limit. Therefore, in the physical quark mass regime the pole dominance form should be modified
appropriately (see, for example, [11]).

Chiral extrapolation of the pion charge radius is plotted in Figure 3. The “free pole” fit results
have essentially no dependence on m2

π within the large statistical errors. With the “measured pole”
fit the statistical error is much reduced and we find an upward trend toward the chiral limit. It is
strongly correlated with the pure pole dominance model, which gives 6/m2

V and the upward trend
is obvious.

For the chiral extrapolation we employ the one-loop ChPT formula with a higher order analytic
term

〈r2〉π
V = C0 −

1
(4π f )2 ln

m2
π

µ2 +C1m2
π , (4.3)

where C0 and C1 are fit parameters and µ is an arbitrary scale. We can see that the chiral logarithm
enhances the charge radius near the chiral limit, and the value extrapolated to the physical point is
〈r2〉π

V = 0.396(10) fm2, which is about 12% below the experimental value.

For the scalar form factor we do not expect the dominance of the lowest-lying resonance (the
a0 meson), as it is already rather far from the q2 = 0 point. We therefore simply fit the form factor
by a polynomial. Chiral extrapolation of the scalar radius is shown in Figure 4, where we draw
the fit curve with the chiral log form plus a O(m2

π) analytic term. The chiral logarithm is very
strong for this quantity and the extrapolation could be sensitive to the details of the fit function.
Our preliminary result neglecting such systematic effect is 0.60(15) fm2.

This work is supported by the Large Scale Simulation Program No. 132 (FY2005) of High
Energy Accelerator Research Organization (KEK), and also in part by the Grant-in-Aid of the
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Figure 4: Chiral extrapolation of the scalar radius.
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