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1. Introduction

The development of methods for treating lattice fermions which preserve the chiral symmetries
present in the continuum theory represents a major advance,permitting familiar quantities such as
BK to be studied with improved precision and new quantities, such as CP violation in K meson
decays, to be treated using lattice methods for essentiallythe first time [1, 2, 3]. These methods
require significantly more computer resources than the standard Wilson or staggered formulations.

Calculations using the five-dimensional, domain wall fermion (DWF) formulation are more
demanding by approximately a factor ofLs, the extent of the lattice in the fifth dimension. The
precision of the resulting chiral symmetry depends on the separation between the left- and right-
handed light degrees of freedom which are bound to the four dimensional boundariess = 0 and
s = Ls− 1, wheres is the fifth-dimensional coordinate. For finiteLs, propagation between these
two boundaries is possible and introduces a residual breaking of chiral symmetry. Given the strong
motivation to use a relatively small value ofLs to reduce computational cost, it is important to be
able to estimate the size of these residual chiral symmetry breaking effects and their dependence
on Ls. This chiral symmetry breaking propagation across the fifth-dimension of the DWF lattice
can be conveniently investigated by using the transfer matrix formalism, developed for the case of
domain wall fermions in Ref. [4].

2. DWF transfer matrix

Lüscher’s original discussion of the Wilson fermion transfer matrix has been exploited to ana-
lyze lattice chiral fermions in Refs. [5, 4]. The case of DWF has been thoroughly treated in Ref. [4].
One first defines a matrixT which, like the Wilson Dirac operator, acts on four-dimensional Dirac
wave-functions (for aL3×T lattice with three colors and a single flavor, this is anL3×T × 12-
dimensional space):

T =

(

B−1 B−1C
C†B−1 C†B−1C+B,

)

≡ e−HT (2.1)

where

Bn,m = (5−M)δn,m−
1
2∑

µ
[δn+µ̂ ,mUn,µ + δn−µ ,mU†

m,µ ] and (2.2)

Cn,m =
1
2∑

µ
[δn+µ̂,mUn,µ −δn−µ ,mU†

m,µ ]σµ (2.3)

This matrix can then be used to construct a “second-quantized” transfer matrixT with acts on a
2L3×T×12-dimensional Fock space:

T = e−∑n,mq†(xn)(HT)n,mq(xm). (2.4)

Here q(xn) is the quantized lattice fermion field, a function of space and time. Continuing to
describe the results of Ref. [4], we can use this matrix to reproduce the usual discrete DWF path
integral that is evaluated numerically in a lattice calculation (Ls > s≥ s′ ≥ 0):
∫

d[Ψ(x,s)]d[Ψ(x,s)] e−SF Ψ(xn,s)Ψ(xn′ ,s
′) = Z tr

{

TLs−sq(xn)T
s−s′q(xn′)

†Ts′
O(mf )

}

. (2.5)
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Here, to be concrete, we examine the case of the calculation of a 5-dimensional fermion propagator.
This expression is valid even before an average over gauge fields is performed. The Grassmann
variablesΨ andΨ correspond to the five-dimensional DWF fields and the operator O(mf ) repre-
sents themf -dependent boundary conditions imposed on the DWF path integral:

O(mf ) = ∏
n

(ĉnĉ†
n +mf ĉ

†
nĉn)(d̂nd̂†

n +mf d̂
†
nd̂n), (2.6)

whereĉn and d̂†
n are the right and left-handed components ofq(xn). Whenmf = 0, O(mf = 0)

projects onto a “surface” vacuum state|0S〉 which is annihilated by ˆcn andd̂n.
We can analyze the largeLs behavior of Eq. 2.5 by introducing a new Fock space basis using

the eigenfunctions ofHT : HTψ±
k = ±E±

k ψ±
k and expressing the original fermionic operatorq(xn)

as:
q(xn) = ∑

k

ψ+
k (xn)ôk +∑

k

ψ−
k (xn)p̂†

k. (2.7)

Using these operators and dropping an over-all factor, the transfer matrix of Eq. 2.4 becomes:

T = e−(∑k E+
k ô†

kôk+∑k E−
k p̂†

k p̂k) (2.8)

It is now easy to discuss the large-s behavior of the transfer matrixTs:

Ts ≈ |0T〉〈0T |+∑
k

e−sE+
k ô†

k|0T〉〈0T |ôk +∑
k

e−sE−
k p̂†

k|0T〉〈0T |p̂k + . . . . (2.9)

Here the “transfer matrix” vacuum|0T〉 is annihilated by ˆok and p̂k. In the limit of larges, Ts will
simply project onto|0T〉. The next leading corrections in Eq. 2.9 come by occupying one of the
fermionic states corresponding to eigenvectors ofHT with eigenvalueE±

k close to zero.
While there are few exact results regarding those eigenfunction of the operatorHT with small

eigenvalues, it is likely that they fall into two classes [6,7, 8, 9]: the first is possibly rare, local-
ized states with eigenvalues approaching zero while the second is more numerous de-localized or
extended states whose eigenvalues lie above a mobility edgeλc, E±

k ≥ λc [9].

3. Residual mass

We can now combine Eq. 2.9 with this assumed eigenspectrum ofHT to estimate the depen-
dence of residual DWF chiral symmetry breaking onLs. We start by examining a general matrix
element of a product of “physical” 4-dimension fermion fields which is best represented by a prod-
uct of operators containing right-handed and left-handed fermion fields, evaluated on thes= Ls−1
ands= 0 boundaries:OR andOL respectively. Generalizing Eq. 2.5 and, for simplicity, setting
mf = 0 we find:

〈OROL〉 = 〈0S|ORTLsOL|0S〉 ≈ 〈0S|OR

{

|0T〉〈0T |+∑
k

e−LsE
+
k ô†

k|0T〉〈0T |ôk

+∑
k

e−LsE
−
k p̂†

k|0T〉〈0T |p̂k + . . .
}

OL|0S〉. (3.1)

Here the leading term, the projection operator|0T〉〈0T |, divides the Greens function into two inde-
pendent factors demonstrating the separate, flavored chiral symmetry of the left- and right-handed
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fermions. The first correction permits quark number±1 exchanges between these two otherwise
independent sectors. This suggests that the second and third terms in Eq. 3.1 should be interpreted
at low energies as the residual mass operatormresψψ expressed in this 5-dimensional language.

A relation between this residual mass term and the second andthird terms in the operator in
curly brackets in Eq. 3.1 can be obtained if we express the operatorsok and pk in terms of the
conventional 4-dimension fieldq(x), inverting Eq. 2.7:

∑
n

mresψ(xn)ψ(xn) → mres∑
n

{

qR(xn)
†|0T〉〈0T |qL(xn)−qR(xn)|0T〉〈0T |qL(xn)

†+
}

(3.2)

?
≈ ∑

n,n′
∑
k

ψ+
k (xn)ψ+

k (yn′)
†e−LsE

+
k qR(xn)

†|0T〉〈0T |qL(yn′)

+∑
n,n′

∑
k

ψ−
k (xn)

†ψ−
k (yn′)e

−LsE
−
k qR(x)|0T〉〈0T |qL(y)

†. (3.3)

Here the RHS of Eq. 3.2 is the residual mass term written in thetransfer matrix language while the
expression in Eq. 3.3 is a rewritten version of the leading order contribution from the second and
third terms in Eq. 3.1.

We can justify this relation and estimatemres, if we assume that the quantities∑k ψ±
k (xn)ψ±

k (yn′)

are localized on the long distance scale at whichmres is defined:

Ka,b(x,y) = ∑
k,a

ψ±
k,a(x)

†ψ±
k,b(y)e

−LsE±
k ≈ mresδ 4(x−y)δa,b , (3.4)

wherea and b are spin-color indices and we assume that the diagonal spin-color structure will
appear and any dependence on the label± will disappear when a volume and/or gauge average is
performed. We can then approximate:mres=

1
12

∫

d4xKa,a(x,y)≈ 1
12R4Ka,a(y,y). Were the “radius”

R estimates the small region inx that contributes and a sum over the repeated indexa is intended.
Finally, K(y,y) and hencemrescan be determined by integrating overyand using the orthonormality
of the eigenfunctionsψ±

k,a(y):

mres =
R4

12
Ka,a(y,y) =

R4

12L4

∫

d4yKa,a(y,y) (3.5)

=
R4

12L4 ∑
k

e−LsE
±
k = R4

∫ ∞

o
dλρ(λ )e−Lsλ (3.6)

∼ R4
eρe(λc)

e−λcLs

Ls
+R4

l ρl (0)
1
Ls

. (3.7)

Hereρ(λ ) on the RHS of Eq. 3.6 is the density of eigenvalues ofHT per unit space-time volume,
color and spin. The final Eq. 3.7 is a generalization of Eq. 3.6displaying the expected contributions
of localized (l ) and extended (e) modes with possibly different average sizesRl andRe. In this final
equation we have also taken the limit of largeLs. This is the “standard” result for the dependence
of mres on Ls, although the factor of 1/Ls is usually missing from the left-most term.

4. Operator mixing

Having developed a reasonably systematic approach to estimating the size of DWF chiral
symmetry breaking, we can now apply this method to a quantityof special interest: the mixing

P
o
S
(
L
A
T
2
0
0
5
)
3
4
5

345 / 4



DWF chiral symmetry breaking Norman Christ

between the usualOLL operator whose matrix element givesBK and potentially larger operators
whose matrix elements do not vanish in the chiral limit. Herewe will examine the case of mixing
betweenOLL andOLR where:

OLL/LR = sγµ(1− γ5)dsγµ(1± γ5)d. (4.1)

The mixing between these two operators can be represented bythe equationOcont
LL = ZLL,LLOLL +

ZLL,LROLR, expressing the continuum operatorOcont
LL in terms of those defined on the lattice. The

mixing termZLL,RR is required to remove the contribution of the wrong chirality operatorOLR that
will appear in matrix elements of the lattice operatorOLL coming from residual chiral symmetry
breaking.

The mixing coefficient of interest can be computed by evaluating a Greens function far off-
shell to avoid innocuous “mixing” caused by low-energy, spontaneous, chiral symmetry breaking:

ZLL,LR(µ) =
1

128 ∏
1≤i≤4

{

∫

d4xi e
ipi ·xi

}

〈0|dR(x1)p/1γµ p/2sR(x2)OLL(0)dL(x3)p/3γµ p/4sL(x4)|0〉p2
i =µ2

≈
1
8 ∏

1≤i≤2

{

∫

d4xi e
ipi ·xi

}

〈0|dR(x1)p/1γµ p/2sR(x2)sL(0)γµdL(0)|0〉p2
i =µ2. (4.2)

In the top part of Eq. 4.2 we show the usual off-shell Greens function that will determine theOLR

component present in theOLL operator. This has been simplified in the lower equation by removing
the two normal, chirality conserving fermion contractions— a step accurate only at tree level.

We next evaluate the RHS of Eq. 4.2 using the method discussedabove. In the transfer matrix
language, the expression to be evaluated takes the form

ZLL,LR(µ) ≈
1
8 ∏

1≤i≤2

{

∫

d4xi e
ipi ·xi

}

〈0S|q
d†
R (x1)p/1γµ p/2qs

R(x2)T
Lsqs†

L (0)γµqd
L(0)|0S〉p2

i =µ2. (4.3)

We can now insert the large-s expansion forTs of Eq. 2.9 into Eq. 4.3. Clearly the leading order
term |0T〉〈0T | does not contribute since the state|0T〉 is an SU(3)L ×SU(3)R singlet while the
operatorqs†

L (0)qd
L(0) transforms as an(8,1) under this group. Likewise the contribution from a

single state of the sort represented by the second and third terms in Eq. 2.9 corresponds to the(3,1)

representation and hence also vanishes.

Thus, we must go to the next term in the larges expansion ofTs, one containing two filled
eigenstates ofHT . This would suggest a double suppression of orderm2

res. However, since two
flavors of quarks are involved, there may be a larger contribution from a gauge configuration that
supports a single localized mode with near-zero eigenvalueof HT [10]. While such a mode is
suppressed (it will appear infrequently in the gauge average and must be located near the position
of the weak operator) if this mode can be used twice, once for thesquark and once for thed quark,
only a single suppression factor will be involved. However,this is not possible here: the product
qs†

L (0)qd
L(0) has quark number zero while the pairs ˆos

kô
d
k and p̂s

k p̂d
k have quark number±2.

Thus, a non-zero contribution to the leading term in Eq. 4.3,requires two independent eigen-
functionsψ+

k andψ−
k′ for thesandd quarks respectively. Carrying out a heuristic estimate, similar
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to that in Eqs. 3.4-3.7, gives:

ZLL,RR ≈

∫ ∞

0
dλ+dλ−e−s(λ++λ−)

{

R8
eρee(λ+,λ−)+R4

eR
4
l ρel(λ+,λ−)+R8

l ρll (λ+,λ−)
}

≈
{

R4
eρe(λc)

e−λcLs

Ls
+R4

l ρl (0)
1
Ls

}2
= m2

res. (4.4)

where, for example,ρll (λ+,λ−) is the joint distribution of localized, positive and negative energy
modes with eigenvaluesλ+ andλ−. One obtains the lower line of Eq. 4.4 by approximating these
joint densities by products of single eigenvalue densitiesand taking the limit of largeLs.

5. Conclusion

Using the transfer matrix formalism of Furman and Shamir we have made rough estimates
of the largeLs behavior of the DWF residual mass and the chiral symmetry violating mixing of
the four-Fermi operators which contribute to a calculationof K0−K

0
mixing. We find that this

operator mixing, which changes chirality by two units, is doubly suppressed, behaving asm2
res.
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