

Studies of conventional quarkonia at Belle

Anatoly Sokolov*

Institute for High Energy Physics, Protvino, Russia E-mail: Sokolov_a@ihep.ru

Studies of conventional quarkonia using 250-400 fb⁻¹ of data collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider are presented.

International Europhysics Conference on High Energy Physics July 21st - 27th 2005 Lisboa, Portugal

*Speaker.

 $^{\dagger}\text{On}$ behalf of the Belle Collaboration

1. Study of charmonia in four-meson final states produced in two-photon collisions

We have measured the production of the charmonium states, $\eta_c(1S)$, χ_{c0} and χ_{c2} , from twophoton collisions in decay modes to four-meson final states, $\pi^+\pi^-\pi^+\pi^-$, $K^+K^-\pi^+\pi^-$ and $K^+K^-K^+K^-$, with the Belle detector. We have also searched for production of $\eta_c(2S)$ in the same final states. All the results of this study are preliminary.

We used 280 fb⁻¹ of data recorded by the Belle detector [1] at the KEKB asymmetric-energy e^+e^- collider [2]. The candidate events are selected by requiring four charged particles with the zero net charge. The analysis is performed in the "no-tag" mode, where neither the recoil electron nor positron is detected. The vector sum of four tracks transverse momenta with respect to the e^+e^- -beam axis in the c.m. frame, $\Sigma \mathbf{p}_t^*$, is less 0.1 GeV/*c*. K/π separation is made using a likelihood ratio from the ACC, TOF and CDC information [1].

In the following analysis, we take only the combinations in which the net strangeness is conserved, $\pi^+\pi^-\pi^+\pi^-$, $K^+K^-\pi^+\pi^-$ and $K^+K^-K^+K^-$. We determine the yields of charmonium events using the invariant mass distributions in each of the three final states. We find clear enhancements at the $\eta_c(1S)$ at ~ 2.98 GeV/ c^2 , χ_{c0} at ~ 3.41 GeV/ c^2 , and χ_{c2} at ~ 3.555 GeV/ c^2 in all the final states. We do not see any clear signatures of $\eta_c(2S)$. We study quasi-two-body decays of charmonia, in which a charmonium meson decays into two resonances, and each resonance decays to two final-state mesons.

The present and previous measurements [3, 4] give the "direct" $\mathscr{G} \equiv \Gamma_{\gamma\gamma}\mathscr{B}$ parameters for the processes discussed here. "Indirect" comparisons are also possible by converting the \mathscr{G} parameter measured for a certain decay mode to the present measured mode using the ratio of the branching fractions, $\mathscr{G}(R \to X) = \mathscr{G}(R \to A) \cdot (\mathscr{B}(R \to X) / \mathscr{B}(R \to A))$, where $R \to A$ is a "normalization" process for which previous measurement(s) are available. The results for \mathscr{G} are summarized in Table 1. In the η_c results, we find large systematic deviations between the present and previous results. In contrast, all the χ_{c0} and χ_{c2} results show good agreement. No clear signature for the $\eta_c(2S)$ is seen in these decay processes. We find prominent two-body $\eta_c(1S)$ and χ_{c2} decays to $K^*(892)^0 \bar{K}^*(892)^0$ as well as $\eta_c(1S)$, χ_{c0} and χ_{c2} decays to $\phi\phi$. In addition, we observe $\eta_c(1S) \to f_2(1270) f_2(1270)$.

2. Study of Charmonium Decays into Baryon-Antibaryon Pairs

Visible structures in the mass spectra of a baryon-antibaryon pair of three-body *B* decays arise from charmonium decays. There is particular interest in $J/\psi \rightarrow p\bar{p}$, where the proton angular distribution has been studied. The baryon angular distribution can be parameterized as $\sim 1 + \alpha \cos^2 \theta$, where θ is the baryon polar angle in the J/ψ helicity frame.

In this study of two-body baryonic decays of charmonia we focus on the decay processes, $B^+ \rightarrow p\bar{p}K^+$ and $B^+ \rightarrow \Lambda \bar{\Lambda}K^+$. We use a 350 fb⁻¹ data sample, consisting of $386 \times 10^6 B\bar{B}$ pairs, collected by the Belle detector [1].

To isolate the signal and suppress the dominant background arising from the continuum $e^+e^- \rightarrow q\bar{q}$ process we follow the scheme suggested in Ref. [6]. An unbinned likelihood fit is used to estimate the *B* yield. There are clear η_c and J/ψ peaks in the $M_{p\bar{p}}$ mass spectrum. The measured branching fractions for charmonia decaying into $p\bar{p}$ are $\mathscr{B}(\eta_c \rightarrow p\bar{p}) = (1.58 \pm 0.12(stat) \pm 0.12(stat))$

Process	present	direct	indirect
	$\mathscr{G}(\mathrm{eV})$	<i>G</i> (eV)	<i>G</i> (eV)
$\eta_c o \pi^+\pi^-\pi^+\pi^-$	$26.4 \pm 3.7 \pm 3.2$	$180\pm70\pm20$	101 ± 40
$\eta_c o K^+ K^- \pi^+ \pi^-$	$23.7 \pm 3.4 \pm 2.8$	210 ± 70	126 ± 64
$\eta_c ightarrow K^+ K^- K^+ K^-$	$7.3 \pm 1.6 \pm 1.0$	280 ± 70	13 ± 7
$\eta_c ightarrow f_2 f_2$	$72\pm24\pm12$	—	—
$\eta_c o K^* ar K^*$	$35\pm 6\pm 5$	—	72 ± 34
$\eta_c ightarrow f_2 f_2'$	$34\pm12\pm6$	—	—
$\eta_c o \phi \phi$	$7.0 \pm 1.4 \pm 1.3$	—	21 ± 10
$\chi_{c0} ightarrow \pi^+\pi^-\pi^+\pi^-$	$48.8 \pm 5.9 \pm 4.4$	$75 \pm 13 \pm 8$	67 ± 14
$\chi_{c0} ightarrow K^+ K^- \pi^+ \pi^-$	$39.9 \pm 4.8 \pm 4.0$	_	55 ± 18
$\chi_{c0} \rightarrow K^+ K^- K^+ K^-$	$8.7 \pm 1.5 \pm 1.2$	—	6.0 ± 2.0
$\chi_{c0} \to K^{*0} K^- \pi^+ + \text{c.c.}$	$16.4 \pm 6.1 \pm 2.5$	—	31 ± 13
$\chi_{c0} o \phi \phi$	$2.5\pm1.0\pm0.4$	—	2.6 ± 1.7
$\chi_{c2} ightarrow \pi^+\pi^-\pi^+\pi^-$	$4.73 \pm 0.49 \pm 0.57$	6.4 ± 1.8	7.7 ± 1.5
$\chi_{c2} ightarrow K^+ K^- \pi^+ \pi^-$	$4.92 \pm 0.54 \pm 0.59$	—	6.4 ± 1.9
$\chi_{c2} ightarrow K^+ K^- K^+ K^-$	$1.23 \pm 0.20 \pm 0.17$	—	0.94 ± 0.29
$\chi_{c2} ightarrow ho^0 \pi^+ \pi^-$	$3.9 \pm 1.9 \pm 0.5$	—	3.6 ± 2.1
$\chi_{c2} o K^* ar{K}^*$	$2.61 \pm 0.54 \pm 0.89$	_	—
$\chi_{c2} o \phi \phi$	$0.63 \pm 0.22 \pm 0.17$	_	1.3 ± 0.5

Table 1: The present results of the $\mathscr{G} \equiv \Gamma_{\gamma\gamma} \mathscr{B}$ and comparisons with previous measurements (shown as 'direct' and 'indirect', see text) [5].

0.22(*syst*) $\pm 0.47(\text{PDG})$) $\times 10^{-3}$ and $\mathscr{B}(J/\psi \to p\bar{p}) = (2.24 \pm 0.13(\text{stat}) \pm 0.31(\text{syst}) \pm 0.01(\text{PDG})) \times 10^{-3}$. α is determined from the fit of the $\cos\theta$ distribution for J/ψ candidates to be 0.54 ± 0.14 . From the baryon-antibaryon mass spectrum in $B^+ \to \Lambda\bar{\Lambda}K^+$ decays we estimate the branching fraction of $\eta_c \to \Lambda\bar{\Lambda}$ and $J/\psi \to \Lambda\bar{\Lambda}$. The results are $\mathscr{B}(\eta_c \to \Lambda\bar{\Lambda}) = (0.87^{+0.24}_{-0.21}(\text{stat}) \pm 0.14(\text{syst}) \pm 0.27(\text{PDG})) \times 10^{-3}$ and $\mathscr{B}(J/\psi \to \Lambda\bar{\Lambda}) = (2.00^{+0.33}_{-0.29}(\text{stat}) \pm 0.34(\text{syst}) \pm 0.08(\text{PDG})) \times 10^{-3}$.

3. Search for the h_c meson in $B^+ \rightarrow h_c K^+$

The h_c meson is the 1^1P_1 spin singlet state of $c\bar{c}$, which is expected to be a narrow resonance $(\Gamma_{h_c} < 1.1 \text{ MeV}/c^2)$ that lies between $J/\psi(1S)$ and $\psi(2S)$. Recently, CLEO[7] has reported the observation of $h_c \rightarrow \gamma \eta_c$ at a mass of $M = 3524.4 \pm 0.6 \pm 0.4 \text{ MeV}/c^2$.

M. Suzuki [8] has proposed using the decay chain $B \to h_c K$, $h_c \to \eta_c \gamma$ to look for the h_c meson. Measurement of the branching fraction for $B \to h_c K$ will provide useful information on non-factorizable contributions in *B* to charmonium decays.

Here we present the results of a search for $B^+ \to h_c K^+$, $h_c \to \eta_c \gamma$ with $\eta_c \to K_S^0 K^{\pm} \pi^{\mp}$ and $p\bar{p}$ using a 253 fb⁻¹ data sample, which contains 275 × 10⁶ produced $B\bar{B}$ pairs, collected with the Belle detector[1]. To isolate the signal and suppress the large background from continuum $e^+e^- \to q\bar{q}$

we follow the scheme suggested in Ref. [6]. No significant signals are seen for $3.17 < M(\eta_c \gamma) \le 3.67 \text{ GeV}/c^2$. To obtain upper limits on the branching fractions for $B^+ \to \eta_c \gamma K^+$ we combine the likelihoods for the $\eta_c \to K_S^0 K^- \pi^+$ and $\eta_c \to p\bar{p}$ modes. Assuming $\mathscr{B}(h_c \to \eta_c \gamma) = 0.5$, we obtain 90% C.L. upper limits on branching fractions for $B^+ \to h_c K^+$ as a function of the h_c mass. For $M_{h_c} = 3.527 \text{ GeV}/c^2$, we find $\mathscr{B}(B^+ \to h_c K^+) < 3.8 \times 10^{-5}$. This is consistent, but only barely, with the lower bound on the $B \to h_c K$ branching fraction obtained by Colangelo, Fazio and Pham [9], which is $\mathscr{B}(B \to h_c K) = (2 - 12) \times 10^{-4}$.

4. Search for the decay $\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-$

The bottomonium state $\Upsilon(4S)$ has a mass above the threshold for $B\bar{B}$ pair production and decays mainly into these *B*-meson pairs ($\mathscr{B}(\Upsilon(4S) \to B\bar{B}) > 96\%$ [5]). Here we report the first evidence for the non- $B\bar{B}$ decay mode $\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$ from the Belle experiment.

In this study 398 fb⁻¹ of data collected by the Belle detector [1] on the $\Upsilon(4S)$ resonance and in the nearby continuum is used. Well reconstructed charged particles are used to reconstruct the decay $\Upsilon(4S) \rightarrow \Upsilon(1S)\pi^+\pi^-$ with the subsequent leptonic decay $\Upsilon(1S) \rightarrow \ell^+\ell^-$.

 $\mu^+\mu^-\pi^+\pi^-X$ events with an invariant mass $M_{\mu^+\mu^-} > 9 \text{ GeV}/c^2$ were selected from the sample selected by the standard Belle hadronic selection. The muon pair invariant mass distribution, $M_{\mu^+\mu^-}$, for the $\mu^+\mu^-\pi^+\pi^-X$ events has a clear low background signal for $\Upsilon(1S) \to \mu^+\mu^-$. To observe resonance states that decay into the $\Upsilon(1S) \pi^+\pi^-$ final state the distribution of the mass difference $\Delta M = (M_{\mu^+\mu^-\pi^+\pi^-} - M_{\mu^+\mu^-})$ where $M_{\mu^+\mu^-}$ is restricted to $|M_{\mu^+\mu^-} - M_{\Upsilon(1S)}| < 6 \text{ MeV}/c^2$ was examined. Three peaks exist in the ΔM distribution. The first (second, third) peaks correspond to $\Delta M \sim 0.56(0.89, 1.12) \text{ GeV}/c^2$, respectively. The first and second peaks originate from the decays $\Upsilon(2S, 3S) \to \Upsilon(1S)\pi^+\pi^-$ with a subsequent $\Upsilon(1S) \to \mu^+\mu^-$ transition, respectively. The position of the third peak, $\Delta M = (1119.0 \pm 1.4) \text{ MeV}/c^2$, is in good agreement with the mass difference $(M_{\Upsilon(4S)} - M_{\Upsilon(1S)})$ from the PDG [5]. The signal above background is determined from the fit to be, $N_{ev} = (38 \pm 6.9)$, with a statistical significance of 7.3 standard deviations. This peak is interpreted as a signal from the decay $\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-$ with a subsequent $\Upsilon(1S) \to \mu^+\mu^-$ transition. This is the first example of a non- $B\bar{B}$ decay of the $\Upsilon(4S)$ resonance. The preliminary result for the branching fraction is $\mathscr{B}(\Upsilon(4S) \to \Upsilon(1S)\pi^+\pi^-) = (1.1 \pm 0.2(\text{stat.}) \pm 0.4(\text{syst.})) \cdot 10^{-4}$.

References

- [1] Belle Collaboration, A. Abashian et al., Nucl. Inst. and Meth. A 479 (2002) 117.
- [2] S. Kurokawa and E. Kikutani, Nucl. Inst. and Meth. A 499 (2003) 1.
- [3] DELPHI Collaboration, J. Abdallah et al., Eur. Phys. Journ. C 31 (2003) 481.
- [4] CLEO Collaboration, B.I. Eisenstein et al., Phys. Rev. Lett. 87 (2001) 061801.
- [5] S. Eidelman et al., Particle Data Group, Phys. Lett. B 592 (2004) 1.
- [6] Belle Collaboration, K. Abe et al., Phys. Lett. B 517 (2001) 309.
- [7] CLEO Collaboration, J.L. Rosner et al., Phys. Rev. Lett. 95 (2005) 102003.
- [8] M. Suzuki, Phys. Rev. D 66 (2002) 037503.
- [9] P. Colangelo, F. De Fazio and T.N. Pham, Phys. Rev. D 69 (2004) 054023.